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Abstract

We describe a computer implementation of kernel density estimation tech-
niques in a highly interactive graphic environment. Adjusting parameters and
changing options can be done in a fast and easy way, getting a rich graphical
response. This requires fast computation methods. Different methods proposed
recently are revised, implemented and compared. Fixed and variable bandwidth
techniques are included, and also are some automatic bandwidth selection meth-
ods.
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1 Introduction

In recent years there has been a great deal of development in nonparametric
methods for density estimation. Most of these methods are based in intensive
computing techniques and so, when implementing them in a computer, it is im-
portant to use efficient algorithms and powerful computers. But getting fast
estimates is not enough. In the techniques involved, there are many options to
choose, and some parameters can take any value in a (un)known range. Despite
valuable efforts done in this very active research field, there are no definite re-
sponses to these choices, and the user of a software package must be able to
modify the parameters and options in a highly interactive way, i. e., having
simple access to the choices and getting complete graphic feedback as important
as can be computer power.

Having all this in mind, we present here an implementation of nonparametric
kernel density estimation in a software package based on interactive graphics.
It is an object-oriented approach built upon XLISP-STAT, a statistical oriented
dialect of the Lisp language.

In this section we give a short overview of the general aspects of KDE soft-
ware, paying attention to the object-oriented approach we use. In the next
section we review some aspects of kernel density estimation theory relevant to
the rest of the paper and to practical application of the techniques. Section 3,
will provide some introduction about creating and using KDE objects so the
reader can get an idea about it. We will cover the two very different ways KDE
software can be used: his graphical interface can be used with the mouse by a
user without any lisp knowledge, while usual LISP-STAT users can include KDE
objects in his own programs. So we will describe first the graphical aspects of
KDE objects, their window appearance and the way to drive them via its own
menu and the dialog windows it creates for getting the user’s commands. Then,
a more technical approach is presented, showing how to use the objects from the
keyboard or from a program file. In the appendices we give a more detailed in-
formation about the transformation object that is used in KDE software but can
also be included in other statistical software. Finally we give some information
about XLISP-STAT, the system that supports our development, and the steps
to follow to get it all running in different computer environments.

1.1 Introduction to KDE software

KDE objects are pieces of software for kernel density estimation computation,
visualization, and exploration. They are implemented in XLISP-STAT, a power-
ful lisp dialect developed by Luke Tierney (‘TTERNEY[90]) for statistical analysis



|
= Inkde: lognormal 500 Al I

0,657

0,438
o

0,219

o

a 2.5 5 7.5 10

bandwidth: 0,208 kernel Elsauare {canonically rescaled! Comp: FFT
Data size: 900 _Data _ran: 368 to 19.4
guartiles: 0,567, 0,992,

e:_0.036
gl,EE

Figure 1: Typical aspect of a KDE window

and graphic display (see last section for more on XLISP-STAT).

From a user point of view, KDE software is able to take all the needed decis-
sions to display a first density estimate starting from a data set only (see figure 1.
Then it gives the user a very easy to use interface for adjusting interactively all
the parameters: the range of values the estimation must cover and the number
of points to be evaluated, the kernel function and the bandwith to use, wether
to include or not some additional graphic information together with the density
estimation (see figure 6). The user can also choose the computation method to
apply and try some methods for automatic bandwidth selection. It is also posi-
ble to apply variable bandwidth techniques adjusting the local bandwidth using
the mouse (see figure 4). A simple bootstrap mechanism can give some insight
about the variability of the estimation, and a parametric density function can
be included as reference or to generate new samples.

From a LISP-STAT user point of view, KDE software is built with LISP-
STAT objects and can be used from the keyboard or from a lisp program fol-
lowing the usual conventions. A lisp object is a structure that contains data
as well as the procedures (usually called methods) to deal with the data. The
object-oriented paradigm is very useful to build complex structures and allows
easy building of user interfaces in graphical environments. A KDE object, be-
side being able to apply our algorithms to its data, contains also a window for
displaying graphical results and for interaction with the user via its own menu
and dialog windows.

More concretely, a KDE object contains



statistical data The current KDE objects presented here allow only for uni-
variate density estimation so its purely statistical data are simply a list of
numbers. The object contains also other related information, such as the
kernel type or the bandwidth to use, the range of z values of interest, etc. ..

methods In the object-oriented paradigm, a method is a function the object
knows how to apply to its own data. There are mainly three kind of meth-
ods in a KDE object. Data manipulation methods allow the object to
complete the internal data needed to achieve the computations. Statistical
methods are for computing the estimates or some of its parameters. Finally,
a KDE object has a lot of interface methods, including the graphic ones for
visualization of the estimates and other graphs.

graphical window A KDE object is actually a descendant of a graphic ob-
ject, so it inherits all the hardware and software needed for displaying its
information and interact with the user.

A KDE object can also contain the description of a theoretical density func-
tion that will normally be the target for our estimates, and a random number
generator to observe resampling effects. This is useful to explore the estimating
capabilities of the methods in study. When the object contains the theoretical
density, there are some extra methods available, for example, to compute the
bandwidth for minimizing distance between theoretical and estimated density
functions.

2 Kernel Density Estimation

In this section, we will summary the more remarkable facts about kernel density
estimation and about how to actually compute the estimates.

Starting from a data set Xy,...X,, we assume that they come from a set
of i.i.d. random variates. Our goal is to estimate the common density function
f in a nonparametric setting. This means that we don’t restrict ourselves to a
parametric family of possible estimators.

The kernel density estimate is defined by

BEES l y (1)

1€l..n

To apply this definition, a function K, called the kernel function, and a band-
width h must be selected. For a fixed kernel function, increasing the bandwidth
implies more smoothing, less variability and more bias in the estimation, and
decreasing it produces the inverse effects. In figure 2 a very simple example
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Figure 2: A decomposed kernel density estimation for 5 data points

is shown. The data set consist in only five data points, they are shown in the
lower part of the graphic. For each data point, a copy of the kernel function is
drawn (in a 1/5 scale for clarity) and then the sum of the five kernel functions
give the density estimate. (To get such a figure on screen and to be able to
interactively change the bandwidth in use and add new points, you can load the
file kdeaddpt.1lsp typing (load "kdeaddpt") while running KDE).

2.1 Choice of kernel

The choice of the kernel function is known not to have great effect on the practical
performance of the estimator. It has obvious consequences on the properties
of the estimate itself: if the kernel function is continuous, or differentiable, or
has compact support, or other properties, the estimate, being a finite linear
combination of translated and rescaled copies of the kernel function, will have
the same properties. For example, to insure that our estimate fj is really a
density function, we will usually use kernel functions that are themselves density
functions (positive and with integral over the whole real line equal to one).

The default kernel function in KDE is the biweight kernel. See table in figure
3 for a list of the kernel functions available in the current implementation.

2.1.1 Canonical rescaling

Ideally, the effect on the estimation of the kernel and the bandwidth must be
clearly separate. It is clear instead that from a kernel function K, a whole family



Name Equation K () Code

Uniform 1/2 - 112y u
Triangular (1—1t)+ t
Bartlett-Epanechnikov 3/4(1 — 1) 4 a
Biweight 15/16 (1 — ¢*)3 b
Triweight 35/32 (1 — t2)‘3_ W
Gaussian 1/y/2m e~ (/27 h
an order 4 kernel 75/16 (1 — %)y —105/32(1 — t*)4 r

Figure 3: The kernel functions available in KDE.

of kernel functions can be produced by scaling the given K, say Ks(-) = K(-/68)/6.
All the members of such a family can give exactly the same estimates for suitable
chosen bandwidths, so they are completely equivalent from the point of view of
density estimation. So, by rescaling the kernel one can vary the bandwidth
keeping fix the value of h. On the other hand, when comparing estimates built
upon different kernel functions, it is often the case that for the same value of the
bandwidth one has very different degree of smoothing.

To avoid these undesirable effects, MARRON and NoOLAN[88] proposed the
use of a canonical representative of each family of rescaled kernel functions. The
representant is chosen by the condition

/K(g(m)zdm = [/ mzl(g(x)dmr.

Using canonical rescaled kernels ensures you will get the same amount of smooth-
ing on your data with the same bandwidth and different kernels.

KDE software give the choice to use or not canonical rescaling when choosing
the kernel. See section 3.1.1.

2.1.2 Higher order kernels

This is a very technical issue. As explained in SILVERMANN[86], pag. 66, it is
possible to reduce the pointwise bias of the estimation using kernel functions that
are no longer density functions, they take negative values in part of his domain.
The estimate we obtain cannot be a density function, but bias is reduced. You
can see the graph of the fourth order kernel included in KDE selecting it in a
KDE window and selecting also the Draw kernel sample item in the menu. We
have included it mainly to be able to apply Devroye’s Double Kernel method (see



next subsection). Please, note that different order kernels cannot be compared
through the canonical rescaling mechanism.

2.2 Choosing the bandwidth

Choosing the bandwidth is the real clue to performance of kernel density es-
timates. While a too big bandwidth gives less variance, it can dramatically
increase the bias of the density estimate. If the bandwidth in use is too small,
the opposite effect will be produced. There are many opinions favouring a sub-
jective choice of the smoothing parameter (see, for example, SILVERMAN[86], p.
44 or ScoTT[92], p. 160 ff.). It is for sure the best strategy for data analysis
or exploratory purposes. The software we present here can be a great help to
visualize changes in the estimation while changing the bandwidth. KDE pro-
vides the Bandwidth slider mechanism for interactive choice of the bandwidth
(see figure 8).

But in any case, both if an automatic bandwidth is to be selected, or an
exploratory technique is to be allowed, a range of interest for the bandwidth must
be computed based only on the data, and this is a decission with some inherent
risk. One can find some criteria for this decission in PARK AND TURLACH[92],
section 2 or PARK AND MARRON[90], section 4. Both papers base its decision
in the already known targeted density function. This is not our case, so we
must take a very conservative approach. Currently we are using the interval
[h5/9, 4hf], where hf is the MISE(h) minimizer with reference to N (0, 1) (see the
comments above about the rule of thumb below).

2.2.1 Automatic selection of a bandwidth

However, in applications and also for objective reference automatic bandwidth
selectors are of real interest. In the last years there has been a great research
effort to develop new algorithms. We have selected some among them, following
applicability, simplicity and computability criteria. The first selector, the sim-
pler, is already used in KDE when a new object is created from a fresh data set.
It is not a very good automatic selector but it is simple to understand and fast
to compute.

But before to discuss it and the other automatic or objective selectors, there is
an important issue to introduce: what is the goal for an automatic selector? Our
main goal is to estimate f by fi. So our best h must minimize some discrepancy
criterion D(f, fh) Typically used discrepancy criteria are ISE, MISE, IAE and
MIAE. They are defined by

IAE(h):/RIf—th, ISE(h) =/R(f—f"h)2,



MIAE and MISE being the expected values of those quantities. Most of the
good selectors target the MISE as the quantity to minimize. Least Squares
Cross-Validation is designed to minimize ISE but has a curious problem in doing
it: if hrosv denotes the random variable resulting of computing the bandwidth
following this rule, and hgg, is the bndwidth that really minimizes ISE (supposed
f is known), then the two random variables have the same expected value, but
are negatively correlated. This is the main argument against trying to minimize
ISE and in favour of targeting MISE: this is what Park-Marron, Sheather-Jones
and HSJM selectors do. The only automatic selector based in TAE minimization
we implement is Devroye’s Double Kernel method.

Normal based rule of thumb. This is the more simple rule for auto-
matic bandwidth selection. It consists in computing the asymptotically optimal
bandwidth (as stated by PARZEN[62]) taking for all the quantities refering to
the unknown target the corresponding quantities computed for a suitably scaled
normal density. The scale parameter used here is the interquartile range, as
recommended by SILVERMAN[86], p. 46, or SHEATHER[92]. In summary, this is
computed using the Parzen’s formula

ot = {pea(K) PRI R( 7

where the functional R is integral of squared function and pg is the second order
moment. Please note that if the kernel in use is canonically rescaled (see previous
section) then py(K)* = R(K) and Parzen’s formula takes the remarcable simple
form

hroT = {R(f")n_l}]/ﬁ,

and does not depend on the kernel actually used. The so-called rule of thumb
consist in taking as f (the unknown density function) the normal density. Then,
in terms of the interquartile range A, the optimal bandwidth is given by

-2 N 1M/
hrot = 1.0113) {uz 2 R(K)n™' b,
or, if the kernel is the gaussian one, hrot = 0.79An=1/5.

Following SitvERMAN[86], formula 3.31, one can use a more robust version
of this estimator, to improve the mean integrated squared error when estimating
skewed or bimodal densities. This robust version is also computed in KDE.

Least squares cross-validation This automatic method for asymptotically
minimizing the ISE was introduced by RuDEMO[82] and BowMmANN[84]. For
many years it has been the method of reference, but recent work has shown that
other methods performs better from the bias point of view and much better in



reducing the variance. See PARK and TURLACH[92] for a detailed description of
the algorithm.

Park-Marron Plug-in method In PArRK and MARRON[90] this estimator is
defined as the largest solution (if it exists) of the equation obtained by plugging-
in a better estimator of R(f”) in the Parzen’s formula. The authors say that
they know of no cases where the solution does not exist. Our implementation of
this method is done via simple iteration of the Park-Marron formula. It is much
faster than the grid-search method as explained in PARK and TURLACH[92], but
will eventually need a good (large) starting value.

Sheather-Jones Plug-In method In SHEATHER and JONES[91], an im-
provement over Park-Marron method is described that has some theoretical and
practical advantages. The methodology is similar in that an equation must
be solved but in this case there are less numerical problems. In KDE, we
have implemented a binned version of the method, and solve the equation by
a simple iteration method, by the moment. It must be stressed that Sheather-
Jones method is recognized by the experts in the fields as the best automatic
method available, and this is shown in the simulation work of Cao, CUEvAs and
GGONZALEZ-MANTEIGA([94] and also in the big bunch of simulations contained in
J. S. Marron’s computer.

Hall-Sheather-Jones-Marron method This automatic bandwidth selec-
tor is described in HALL, SHEATHER, JONES and MARRON[91]. We have im-
plemented it for two main reasons: it requires no iterations and no grid search
minimizing, and has a remarkable theoretical asymptotical order of convergence
of n=/2. It consist on the same idea of plugging estimates into the Parzen’s
formula, but the techniques used are more sofisticated.

Devroye’s double kernel method The idea of the method is simple and
very elegant. It is known that using higher-order kernels improves the bias of the
kernel density estimation in some order of magnitude respect to n, the sample
size. DEVROYE[89] argue, and show, that if we take two density estimations f,,
and ¢, built on kernels of different order, the value of A that minimize the dis-
tance between the two estimations is a good bet when targeting the minimizer of
the distance from f, to the unknown density. In our implementation, following
some author advice, we use the setting of the first example in DEVROYE[89],
pag. 554. We compute the distance between estimates for 70 bandwidth values
chosen ) in the bandwidth interval of interest (using logarithmic spacing), and
then we show the values in a separate window for allowing the user to decide if
the minimum achieved is the appropriate one (in some cases double local minima
can appear, and it is not possible to select between them in an automatic and
fast way).

10
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Figure 4: Variable bandwidth is applied to a data set in the left figure. In the right,
the bandwidth function is shown with the handles the user can move with the mouse
to change the function’s shape.

2.2.2 Variable bandwidth

Some authors argue that for a better estimation of the target density, the best
strategy is to apply different bandwidths to different parts of the range of interest.
So, in regions where the curvature of the density is larger, a smaller bandwidth
can be more suitable, and viceversa.

In order to allow the user experimenting with these ideas, we have imple-
mented the two main ways of variable bandwidth, see MARRON and UDINA[95].
If in the original definition 1 we want to change h by a function, we can make h
depend on z or on X;. In the first case, we have

1 LT —
e 2 G

i=1...n

and we talk about bandwidth variable on z values. This gives an estimator for
f that is not itself a density function in general but has some appealing proper-
ties (see TERREL and ScoTT[92] for a general discussion on variable bandwidth
estimators. The other way for varying the bandwidth is to give a different scale
h; to the kernel function in each data point X;, 7 =1...n. We have

1 T — x;
K
O EA

i=1...n

and we will talk about bandwidth variable on data position.

KDE allows, via the Computing method menu item, to use either of this
two methods of variable bandwidth, and using it in a really interactive way. By
using the Local Bandwidth Controller, see figure 4, the user can control with the

11



mouse the amount of smoothing to apply in each part of the estimation. In the
figure, three kernel curves are shown to give an idea of the different bandwidth
in use in different regions of the estimate.

2.3 Computing Kernel Density Estimates

Recently, some work about fast computation of kernel density estimation has
been done starting with the seminal paper of HARDLE and ScoTT[92]. We will
refer also to FAN and MARRON[93], HALL and WAND[94] and WAND[94].

There are three main approaches to practical kernel density computation:
direct computation, binning methods, and updating methods.

Direct methods are very inefficient when implemented in a computer, and are
in fact impracticable in a regular computer if the sample size is medium to large
(say some hundreds) and the language in use is not a very low level one such as
FORTRAN or C. But direct methods apply directly the definition and thus have
the advantage that there are no decisions to take in the implementation (only
the kernel and the bandwidth to use), and there are no special requirements
on the data. It is clear, also, that in the (very unusual) case in which a single
point density estimation is needed, the direct method is the appropriate choice.
For these reasons, one can find in some high level languages a routine call to
compute direct kernel estimation, XLISP-STAT provides it and KDE uses it in
the ’direct’ computation method.

Binning methods are based in some sort of rounding the data and working
from then on with equally spaced grid points and some weight-counts assigned
to each one of them. More precisely, let g1, ..., gg the bin centers around which
we round the data. To bin the data means substitute our data X4, ..., X, by the
counts, ¢, ...,cq. The simplest method of computing these counts is defining ¢;
as the number of data points included in the interval centered at ¢;. This is called
simple binning and is used in KDE software for building the histograms. But as
HALL and WAND[94] show, and FAN and MARRON[94] recommend, linear binning
is better for computing kernel estimators. Linear binning consist in splitting the
weight of each data point between the two nearest grid points, according the
following definition, depicted in figure 5:

lgi — X
w= X (1-15 J>+

j=l..n

where ¢ is the bin width or distance between grid points.
Once the data are binned, we will compute f(z) (see equation (1)) only for

12
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Figure 5: The unit weight at each data point X is split in two parts accounted to the
two nearest grid points, the nearest getting more weight.

the grid points, using the approximation

S k(T H) = Y cwiny(h)

=1...G =1...G

Tulgi) =

> =

where wy(h) := K(ké/h)/h. From this expression it is clear that after doing
the data binning step, the only remaining steps are 1) computing the kernel
weights wy and 2) perform a discrete convolution. Because most of the wy are
zero, the number of kernel evaluations to be done is really low, and so in this
step 2 is where the main computational saving is achieved (Note that & ranges
in G and w_; = wy). When the finite convolution is computed directly, the
method is called WARP (weighted average of rounded points, see HARDLE and
ScoTT[92]). Alternatively, one can apply discrete Fourier transforms via some
Fast Fourier Transform (FFT) algorithm, see SILVERMAN[86] or WAND[94].

Updating methods are based in a simple idea: when computing the density
estimation for several points, passing from one point to another means to sup-
press some data from the computation and to add some other data, the rest of
the data need not be involved in recomputation. This is absolutely true when
the kernel in use is a uniform one, and can be adapted when the kernel in use
is of some polynomial type, see FAN and MARRON[94]. Concretely, the kernel in
use must be of the beta family, namely, referring to the figure 3, the uniform,
Bartlett-Epanechnikov, Biweight or Triweight. The updating method has a big
advantadge: it is the only fast method that can still be used in both way of
variable bandwidth, but has also some stability problems, specially when the
bandwidth becomes small relatively to the bin width. Updating ideas can be
applied also to binned data and KDE’s updating method work actually in this
way.

13



FAN and MARRON[93] show that, in a typical univariate setting, Warping
and Updating methods are very fast and argue that use of FF'T method is no
worth the extra trouble. This is true, but there are some important questions to
remark.

Warping and Updating are posibly faster for computing one estimation for a
given bandwidth, but when we are in an interactive setting, with a user chang-
ing rapidly the bandwidth value, FF'T' is much more convenient because it allows
computing the FFT of the array of counts {¢;}$2, for a very wide range of band-
widths. Moreover, for warping be efficient, it is important to have the proper bin
width for the given bandwidth, this aspect being not so critical when convolving
with FFT. So, when the user is changing the bandwidth in an exploratory task
and WARP is in use, it will be often the case that data must be rebinned, and
this is a hard task for big n. Finally, it must be noted that when using interpreted
languages such as LISP-STAT (other popular choices;, GAUSS, S, MATLAB, are
also interpreted) one must analyze the part of the code that will be interpreted
and the part that is executed directly by inner (compiled) routines. This can
change from one package to another, but in general, the FFT routine is internal
and very fast, while direct vector convolution can be slow in some languages, as
is in LISP-STAT. In GAUSS and MATLAB, discrete convolution is also available
as internal compiled routine.

In summary, we have seen that implementing a fast kernel estimation method
implies three steps 1) rounding the data into grid points, 2) computing some
weights and 3) doing a finite convolution. The first step is done usually by a linear
method, and the third can be done directly (WARP) or by Fourier Transform
(FFT). Alternatively, 2 and 3 can be substituted by an updating mechanism. In
the next section we will come back to this issue from a non-expert user point of
view.

2.3.1 Fast Computing automatic bandwidth selectors

Another involved issue is the computation of automatic bandwidth selectors.
The simplest, the normal based rule-of-thumb is very fast to compute but his
performance is very poor except for estimating densities near to the normal, in
which case it can rather be better to use a parametric method. In recent sim-
ulation studies (see for example Cao, CUEvVAS and GONZALEZ-MANTEIGA[94])
selectors as the PM, SJ or HSJM mentioned in section 2.2.1 are shown to be the
best. Actual calculation of these selectors involve the computation of a double
sum to estimate the integral of the second derivative of the unknown density.
This pose a very high computational cost unless some binned method is used.
Some work in progress by Matt Wand and the Santiago people discuss accuracy

14



questions that arise in this problem. We have implemented and tested some of
these methods in a binned version, and the provisional conclusion is that with a
high grid count (greater than 300, say) they don’t have big accuracy problems.

3 Using KDE objects interactively

This section is intended to give the reader an idea about how to use the software
described in the previous section. In the appendix we describe the hardware and
software requirements for running KDE software and the ways to get it all. In
this section we describe how to use KDE in two main ways: as a non-lisp user
or as a introduced lisp user that writes his own programs. If you are not a lisp
user you will need to type only a few (or none at all) lines of lisp to get KDE
running, and from then on the mouse will be the tool for comunicating with the
graphic objects. We will try to do also in this section some technical advice for
helping users non expert in density estimation to take the main decissions while
using the software. The second part of the section, is for XLISP-STAT users and
provides them with hints for using KDFE object from the lisp interpreter or from
his/her own lisp programs.

KDE software is built over XLISP-STAT, see the appendix for a brief de-
scription. Let’s assume that you have all the requirements detailed there and so
you be able to load the file that get all together running, runkde.1lsp. So, once
you have the xlisp prompt, usually a >>’, you can type

(load "runkde")

and you will get the main file loaded. Other files will then be loaded as needed
without further user operation.

If you have some data already in a lisp list form, you can then create a KDE
object to analize your data by typing

(make-kde :data my-data :title "Window for my data")
If your data reside in a file, you can use a call similar to
(make-kde-from-file "myfile")

provided that your data are in the file in the usual way, separated only by spaces
or newline characters.

Once you have your data installed in a KDE object, you will get a window
on the screen, and have access to the KDE menu. See the next section for a
description of the items it provides. By choosing among them with the mouse
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you will be able to fix the kind of kernel to use, or to interactively choose the
bandwidth, for example.

But if a user wants to work with the object from the keyboard or from a
program file, (s)he will send messages to it. In the next very simple example,
we create a KDE object named testkde with 500 normal random numbers, we
decide to use a bisquare kernel and ask the object for the optimal bandwidth
according the Rule of thumb method (see below for details). Lines beginning
with ‘>’ are typed by the user, each one is followed by a response line from the
lisp interpreter.

> (def testkde (make-kde :data (normal-rand 500)))
TESTKDE

> (send testkde :kernel-type ’b)

B

> (send testkde :rule-of-thumb)

(0.80787 NIL)

>

The file runkde.1lsp also implements other functions to create specific KDE
objects useful for testing purposes. For example, after (load '"runkde"), calling
(mkn 500) will create and save in a variable named nkde a KDE object with 500
normal random data points. In MARRON and WAND[92] there is a very interest-
ing set of normal mixture densities. You can play araound with them by calling
the lisp function make-mw-kde with a number between 1 and 15 as the density
number and an optional second argument for the sample size. For example,
figure 6 has been obtained by typing (make-mw-kde 8 800). A user knowing
something about the LISP-STAT language can easily build his own functions
to explore particular distributions and/or sample sizes. The file runkde.lsp
contains other functions as well for using it or for serve as further examples.

3.1 The graphical interface to a KDE object

Each KDE object is visible in a window. A KDE window has three regions (see
figure 1 or 6): The button region, the main display region and the info region.
The button region, whose appearance depends on the windowing system in use,
contains a button for closing the window and possibly another for opening the
KDE menu (see below for a description of the items available on the menu). The
KDE menu can appear in some menu bar when the KDE window is active. In the
info region, some methods can display textual information about the progress
or result of their calculations. In the main region of the window, the estimated
density is displayed framed by labeled axis. If the object has been assigned a
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Figure 6: A KDE window with added graphical information, and the KDE menu.

theoretical distribution, its density function can be displayed using a different
pattern or color. Using the mouse, the user can do different actions (see Mouse
modes below) in this main region of the window. One can also decide to display,
together with the density function(s), a histogram of the data and/or other useful
complementary graphical information.

3.1.1 KDE Menu

When a KDE window is active, the user has access to the KDE menu. It offers
a series of items in five groups. The first group offers items for graphic control
of the window, the second group includes basic file access, the third one allows
the user to control what information is to be displayed in the main area of the
window. Through the items in the fourth group the user can control the basic
parameters of the kernel estimate and of the computed approximation to it, and
finally, the last items provide some statistical techniques to explore the kernel
density estimate.

The items of this first group control basic aspects of the window and its
interaction with the user. They are provided essentially by XLISP-STAT as
standard capabilities of graphical windows.

Rescale plot Redraw the whole window, rescaling in order to include all the
lines internally computed. It can be necessary to use this item after chang-
ing some parameter in the current estimation.

Options... This is the standard options dialog from XLISP-STAT. It allows the
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user to choose some display options like the background color. (S)he can
also decide whether the window has scroll-bars or must draw all its contents
stretched to fit in the actual window.

Mouse mode... The mouse mode determines what the user can do with the
mouse by clicking (and dragging) in the main region of the window. Cur-
rently, selecting this item will pop-up a dialog window for selecting one
of three mouse modes. (see figure 7 and the description of mouse modes
above).

Show coordinates... The default mouse mode. When the user clicks
within the graph, coordinates of the click point are shown and lines lo-
cating the point are drawn. One can move the mouse with the button
pressed to read the numbers in a clean place.

Zoom in allows the user to click-and-drag the mouse to define a rectangle
in the graph. The graph will be rescaled to focus on this rectangle.
To restore the original view rectangle, user can select Rescale plot
from the menu or can do a shift-click in the graph (i.e. press the mouse
button while holding down the shift key).

Probability from..to.. allows the user to push down the mouse button
in a “from” value zy and release it in a “to” value z; and have an
approximate value of the estimated probability Pz < z < z) ac-
cording the current kernel density estimation. It can be useful when
using variable bandwidth depending ‘on x-position’, because the esti-
mates obtained in this that case posibly does not integrate to one.

The file kde-add-point.lsp implements an additional mouse mode for
adding points and seeing how the estimate is changing. Typing

(load "kdeaddpt")

you will obtain a kde window with a few data points, for each click you do
in this window you will add a new data point in the mouse position. All
the other features of KDE objects will still be working.

Save to file This item prompts for a filename and then saves an image of the
main region of the window to this filename in postscript format. This item
(XLISP-STAT native) is not available in some versions of XLISP-STAT.
In Macintosh or MS-Windows versions of XLISP-STAT, you can use the
standard facilities from the Edit menu to Copy/Paste the graphs in KDE
windows to some graphics program, and then save or print your windows
from it.

Redraw window Does it.
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Figure 7: Some dialogs of a KDE window

The items in this second group provide access to files for loading data into
the KDE object or for saving the current configuration of the object in a lisp

file.

Save myself in a lisp file This item prompts for a filename to use, and save
in the file all the lisp instructions that will bring to life the object in a
future lisp session. For example, if you save the object in a file called
aFile.kde, typing (load "aFile.kde'") at the lisp prompt, you will get
the object again. This is a very convinient way to store and modify a KDE
object. Once you have saved the object, you can open the file eith your
favourite editor and, with a little of LISP knowledge (see section B.3 in the
appendix) you can modify the lisp call that will recreate the object.

Graph to gnuplot file Will display a dialog to choice some options and then,
a gnuplot version of the graph window will be created.

Read data from a file Instruct the KDE object to read his data from a file in
some standard formats. For the moment, one must provide a file containing
raw univariant data, separated by spaces, tabs or newline characters.

Items in this third group allow the user to decide what information will be
displayed in the window. Most of them are mark/unmark items. This means
that selecting them will make a little mark appear at the left of the item in the
menu, showing that it is already active. Selecting the item again will unmark it,
and its function will be deactivated.

Update info in window Some basic info about the current data set and the
current kernel type and width will appear in the bottom of the window.
Some commands or posible programs can change the information being
displayed in this area without updating it. Using this item the user can
force redisplaying the correct current basic information.

Draw kernel sample When this item is marked, a little kernel function is
drawn over the graph, to give a graphical idea of the bandwidth and kernel
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Figure 8: Dialogs for changing the kernel and tuning the bandwidth

currently in use. If variable bandwidth technology is currently in use, three
copies of the kernel function will be drawn (see figure 4) showing a sample
of the different bandwidths applied.

Draw data points If you mark this menu item, in the upper part of the KDE
window some cross marks will be drawn showing the position where some
data exist. No difference is shown about how many data point there are
in each position, this can be investigate with the histogram or the denstity
estimation itself. Please note that this item should not be marked when
working with a big data set: the information you get is not really useful
and drawing the window can be frustatingly slow.

Draw histogram While this item is marked, a scroll-bar dialog is available to
determine the number of bins the superimposed histogram of your data
will have. Close the slider dialog or select this item again to suppress the
histogram. Default number of bins is computed by Sturge’s rule, see for
example ScoTT[92].

Show previous estimate If this item is marked, and the user makes some
change to the estimation (the kernel or the bandwidth is changed, for ex-
ample) a second curve will be drawn, showing the estimation previous to
the last change. It is shown in a different colour, usually blue.

Draw theoretical density Obviously, this item will be accessible only when
a theoretical density function has been given to the object. In this case,
and if the item is marked, a shadow of the theoretical density function will
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appear together with the estimated density.

[tems in next group are to determine the basic choices about the kernel
density estimation: the kernel type and the bandwidth to use. But remember:
what you get when using a computer is not the kernel density estimation, it is
only a numerical approximation, so you must also be able to determine how this
computation is done. Items in this group provide you the means to decide it.

X range and count Allows the user to give new minimum and maximum val-
ues for the x-axis. Once given, this range will be used in all the displaying
and computing estimates. The user can also type in a third number, the
number of values to use for display and calculations. Thus, one can enter
in the x-range dialog either “-1 1”7 or “-1 1 200”. The resulting num-
bers will be used as grid values. When using some fast computation method
involving binning (see section 2.3.1), these numbers become the bin centers.

Choose kernel... A dialog window will appear showing the kernel functions
available (see figure 8, see also figure 3 for formulas describing the kernel
functions listed in this dialog. ). This dialog will let you also decide whether
to use canonical rescaled kernels or not. See section above for a discussion
of this question. In brief, remember that if you do pretend to compare the
estimation given by different kernel functions you must check this option.
If not, checking it can no harm you anyway.

Bandwidth... The user can type the bandwidth to use in the density estimate.
The user can also type the bandwidth range (two numbers with a space be-
tween them) to use in several methods like the one invoked by the following
item or when automatically selecting the bandwidth with a optimizing cri-
terion. For using varaible bandwidth technology, go to the item Computing
method.

Bandwidth slider/Local bandwidth controller The bandwidth slider al-
lows the user to interactively choose the bandwidth by moving with the
mouse the slider in a scroll-bar (see figure 8). Following the suggestions
of, for example, MARRON[93], the slider has been tuned with a logarithmic
scale. See below for some considerations about the bandwidth range in use.
When variable bandwidth is in use, instead a slider dialog you will get a
transformation window to decide what bandwith function is to be applied.
By moving the knots with the mouse, you can decide what bandwidth value
must apply to each part of the X axis. Note that the transformation win-
dow has logarithmic scale in the vertical axis. See the figura 4 for a typical
bandwidth controller. In the appendix of this paper a full description of
the transformation interface can be found, here we will give only the main
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hints to its use. For some insight about variable bandwidh, see section 2.2.2
The transformation window has a menu, a main graphing area and a Mouse
Mode area in the lower part of the window. In the menu you can find a
Shift Transformation item for a fast way of modifying the current trans-
formation by adding to all the values a fixed constant, let’s say. You can
find also a Knots Options item that allow you to move horizontally the
knots to an equally spaced position, among other things. By clicking with
the mouse in the little square at lower part of the window, you can change
the mouse mode. The mouse mode determines the effect of clicking and
dragging with the mouse in the main area of the window. For exemple, you
can click first in the little squared box placed at left of the ‘Select’ label to
choose the ‘Select” mouse mode. Then you can click-and-drag the mouse
to select some knots by closing them in the selection rectangle. Once some
knots have been selected, you can choose the ‘Move knots’ mouse mode
and move all the selected knots at once.

Computing method Allows the user to interactively choose the computing
method to apply to the kde object. Currently, it will give four possibilities:
Direct, Binned with WARP, Binned with FF'T and Updating. See section
2.3.1 for a description of the methods. From a non-expert user point of
view, we recomend using Binning/FFT method usually, that’s the default
in KDE. Updating methods are the right choice for variable bandwith.
Only if the data set is of small size (less than 200, say) the direct method
can be faster.

The lower part of this dialog window allows the user to choose between
fixed bandwidth estimation or one of the two variable bandwidth techniques
available (see section 2.2.2).

The last group of items in the menu consist in statistical methods to explore
the kernel estimation. The first three of them are useful to explore and visualize
the estimation capabilities of kernel methods to fit a particular distribution with
a given sample or sample size.

Install theoretical distribution A dialog will be displayed offering some the-
oretical distributions, see figure 9. If one is chosen, its density function
will be taken as reference in the kde object and the corresponding random
generator will be installed also. They will be used through the menu items
that follow. Choosing ‘Normal Distribution Adjusted to data’ the distri-
bution will be a Normal one with mean and deviance estimated from the
current data set. If you choose ‘Normal Mixture’, a dialog will be presented
for desinging you own mixture using the mouse over a set of sliders.
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Resample data Using the random generator attached to the object (if there
is one), a new sample will be generated with the same size as the current
data. If there is no random generator for the object, this item will be not
available.

Minimize distance A golden-search minimization loop will start to determine
the bandwidth that minimizes the distance between estimated density and
theoretical density. Distance to use can be fixed between those derived
from the Ly, £1 or Ly norms. This process can be rather slow on small
computers specially if the number of grid points is big. Be warned: in some
rather strange cases, it is possible to have more than one local minima in
the mentioned distance, so the golden search procedure can fail the target.

Bootstrap variability One can give the number of bootstrap samples to use.
Once the samples are generated, and the density estimation for each one
is drawn (using the current bandwidth and kernel function), a series of
lines will appear. They outline the quartile values (0, 0.25, 0.5, 0.75 and
1 quantiles) for the values obtained for each probability density in each
of the current x-values. (This item is not available right now, it must be
improved).

Automatic bandwith selectors... Choosing this item will bring up a dialog

box (see figure 3.1.2) providing some methods to automatically select the
bandwidth. To automatically select means to base the calculations only on
the data, although differents methods apply different assumptions on the
target density function and different criteria to measure the discrepancy
between the target and the estimate. There is absolutely no way to decide
what is the best method and thus the best bandwidth. Some of them are
very fast to compute, some are proven to perform good in simulations, the
user must try a few of them and decide by examining the density estimates
obtained.
In KDE we provide some automatic selectors. We have selected them look-
ing at good performance, easy of computation and/or spread of use in the
literature. Here we give only some short hints directed to a non-expert
user, some more technichal description and references can be found in sec-
tion 2.2.1.

Normal based rule of thumb This is a really simple and very fast to
compute rule to select the bandwidth. It assumes that the target
distribution is a normal one, so it can be very unreliable. This is the
default value KDE takes when first reading a data set.

Least squares cross-validation The idea of this selector is a leave-one-
out one. It selects the bandwidth that better predicts each data point
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based on the remaining data when removed. Though it has some
assymptotic optimal properties, is known to have some tendency to
oversmoothing and to have a high variability, so it has no great repu-
tation.

Park-Marron Plug-In method

Sheather-Jones Plug-In method Based on the same principles as the
rule of thumb, these highly improved selectors are much more costly
to compute. They use similar technology and simulation evidence
favoures the second over the first but with no great difference. Qur im-
plementation of these methods is done via simple iteration of a function
¢ to solve an equation of the form z = ¢(z), so the initial value matter.
You can try the methods with small or big initial values, usually you
will obtain equivalent results in the sense that density estimates will
be about the same in both cases. When in doubt, fix the starting value
as given by the rule of thumb above.

Devroye’s Double Kernel method This method try to minimize the
Ly distance between the estimate and the unknown density by mini-
mizing the distance between two estimates. After some time of com-
puting, a graph of the distance to minimize will be shown in its own
window. The user can then evaluate if the minimum obtained in the
approximate computation is to be trust or there is another local min-
imum preferable. In the graph window, a zoom-in mouse-mode is
provided.

Hall-Sheather-Jones-Marron method This selector is faster to com-
pute than most of the others and has a very good asymptotical per-
formance.

Silverman’s test graph A window with the graph of the second derivative
of the estimated density will appear to easy application of Silverman’s test
graph method (see SILVERMAN[86]). The user can use the bandwidth slider
dialog to adjust the bandwidth and see how the second derivative changes.
In Silverman’s own words (see p. 56, text enclosed in brackets is ours)

...for good estimation of the density itself, the magnitude of the
noise in f” [f is the estimated density, while f is the unknown
density function to estimate] will be about half of the maximum
value of the trend of this curve. For reasonably large sample sizes,
the noise will appear as rapid fluctuations of the curve f".

The proposed method for choosing the smoothing parameter is as
follows. Draw ‘test graphs’ of the second derivative of f for various
values of h [h is the bandwidth, this step can be done interactively
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Figure 9: The dialog for choosing bandwidth selectors and the dialog for installing a
reference distribution.

with the bandwidth slider]. In the light of the discussion above,
the ideal test graph should have rapid fluctuations which are quite
marked but do not obscure the systematic variation completely.
Choose the window width that yields a test graph conforming
to this principle, and use this window width for estimating the
density itself.

Although this method has no great reputation in the current nonparametric
comunity, we agree with Silverman in recommending some trial with it in
a interactive context like KDE.

3.1.2 Some keyboard commands

Some interface commands can be typed in when a KDE window is active.

key | command

+ | multiply bandwidth by 1.5
divide bandwidth by 1.5
rescale plot
toggle show data points
toggle boxplot
toggle show kernel sample

toggle show histogram

toggle histogram /frequency polygon
shift histogram bin edges 10% to right
shift histogram bin edges 10% to left

[anlie B @ B = a - o o i o PR o}
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3.2 Using KDE objects from xlisp-stat

Besides using KDE with the mouse, XLISP-STAT users with some experience
can also include KDE objects in his programs or modify some of its methods to
suit special purposes, or simply to improve it. This section gives some clues for
facilitate it.

KDE objects are actually implemented in two main branch of objects, the
kde-proto descendants and wkde-proto descendants. wkde objects contain the
window and other interface widgets for allowing kde objects display and com-
munication with the user. kde objects actually hold the statistical and compu-
tational machinery.

As all other LISP-STAT objects, kde objects have slots and methods. Slots
are like variables owned by the object, and accesible only through it. Methods
are functions or procedures owned by the object, and posibly different from other
methods with the same name but belonging to other objects.

The main slots of a kde object are accessible through Accessor methods.
Conventionally, an accessor method is a method that is used to get or set the
value of a slot and usually have the same name as the slot. You can find below
a commented list of the slots of a kde object that have an accessor method. You
will find also a couple of examples of using this kind of methods. If you want
to know all the slots of a kde object, you must look at the file kde.1lsp for the
definition of kde-proto.

3.2.1 Methods implemented in KDE objects

Reading the description of the KDE menu items available gives an idea of the
main methods currently programmed for a KDE object. Nevertheless, we will
explain here with more detail some of the more interesting methods. But before,
we must explain some technical terminology of the object programming paradigm
as used in XLISP-STAT.

As said before, methods are like “local functions”. Each object knows how
to apply its methods, i.e., it knows which piece of code must be executed. Using
the object-oriented programming paradigm means that the method will use the
most of the information it needs from the slots of the object who is running the
method (the local values) instead requiring all the information via parameter
passing. So, slots and methods provide a very convenient way of encapsulating
all the information in one unique piece of software.

To invoke a method, we send to the object a message, like in:

> (send ofd :describe-data)
((107 3.45991 1.0403) (1.67 2.3 3.8 4.25 4.93))
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and we get a response, in this case some statistics describing the data set. In this
example, an object called ofd is sent a message :describe-data that produces
the execution of the method bound to this message.

In the rest of this section we will describe some of the methods a KDE object
knows about, mainly those with more statistical interest.

Accessor methods

Many methods are of the accessor type: they are designed for accessing the slots
(these sort of object’s local or private variables) to get or to set his values. So,
if we send to a kde object the message :data, we get the statistical data stored
within the object. If we send the same message together with a list of values,
we are setting this list as the new data for the object. In the table of figure 10
there are the main methods defined for KDE objects, with a brief description of
the meaning of the information they manage. Complementary information can
be found in section 2. In the third column of the table the default value for each
slot is shown. Those with a star as default value are slot which default value is
computed from the data following criteria explained in section 2.

Examples of use of accessor methods

Here are two examples of legal lisp lines using some of the accessor methods
described above for a KDE object named akde:

(send akde :bandwidth)
(send akde :bandwidth 0.8)

The first will return the current bandwidth in use for akde, the second line
will install 0.8 as the bandwidth for the object akde.

If you have an object mykde created, say, by the function make-kde (see
section 3), you can customize it by sending the following series of messages:

(send mykde :title "My first kde object")
(send mykde :kernel-type ’h)

(send mykde :use-canonical nil)

(send mykde :calc-method ’warp)

(send mykde :bandwidth 1.5)

(send mykde :distr-dens #’normal-dens)
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Message Information accessed default
:data the statistical data to work with

the list of values in the x axis to use in
:x-values (*)

computations

:estimates-y

The list of y values of the current estima-
tion, to be used jointly with the previous

:bw-ends

the ends of the interval of interest for the
bandwidth

The code for the kernel function, see figure

:kernel-type 3 ’b

:bandwidth the bandwidth or window width

distr-dens the the'oretical density function attached to nil
the object

, the random generator attached to the ob- ,

:distr-rand . ) nil
gect

(title A string to be shown as window name "KDE”

- variable-bandwidth A flag .(t/nil) meaning use variable/fized i1
bandwidth

, A flag (t/nil) meaning use or not canon-

:use-canonical . t
ical rescaled kernels
The computing method, must be one of

:calc-method fft

direct update warp fft

:histogram-num-bins

The number of bins the histogram will
have next time il appear

Figure 10: The main accessor methods in a KDE object
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A Transformation objects in XLISP-STAT

Transformation of data or parameters is a technique used very often in practical
statistics. In kernel density estimation it appears at least in two contexts in
the last years research: WAND, MARRON and RUPPERT[91] apply some trans-
formation to data before doing density estimation and they apply the inverse
transformation to the density obtained for getting the density estimation of the
original data. In a very different context, and following a suggestion of Steve
Marron, we have investigated the effect of applying a user defined transformation
to the bandwidth to be used in a kernel density estimation.

In this appendix we will describe an implementation of an interactively user-
defined transformation. You can try and use it by selecting one of the Variable
Bandwidth options in the Computing method item in the KDE menu, and then
asking for a Local bandwidth controler in the same menu. In the rest of this
appendix, we will explain the use of transformations in our LISP-STAT im-
plementation, both from the point of view of a non-expert user and of a lisp
programmer.

In our context, a transformation is a map between two intervals of the real
line, called domain and image respectively. Though parametric families of trans-
formations are very interesting, we focus here our attention in non-parametric
transformations: the user can decide the aspect of the graph of the transforma-
tion using the mouse.

From a user point of view, a transformation is shown and modified by means
of a window. In his window, a transformation object looks like the graph of the
corresponding real function. In the window you will see too a few thick dots along
the curve (see figure 4 or 11) that we will call knots. They are for controling
the shape of the transformation graph using the mouse. The actual relationship
between knots and the transformation is affected by the interpolation mode in
use, as controlled from the Interpolation item in the menu. In the lower part of
the transformation window, you can see a few buttons for selecting the Mouse
Mode, that is, the effect that mouse clicks on the window will have. They will
be described in brief.

A.1 Controling a transformation with the mouse

When a transformation window is on the front of your screen, you can interact
with it using the mouse. You can pull down the Transform menu and select some
of the items you will find there, or you can click (or click-and-drag) directly in
the window. The way the window reply to mouse actions depend on the Mouse
Mode that is currently selected.
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A.1.1 Mouse Modes

You select the mouse mode either using the item named Mouse Modes in the
Transform menu, or by directly clicking in the little square boxes in the lower
part of the transformation window. The current mouse mode is shown by the
highlighted little square box.

These are the usually available mouse modes, and the effect of using the
mouse under each of them:

Show Coordinates When clicking in the main area of the transformation win-
dow, the coordinates of the mouse position will be drawn toghether with
a pair of lines showing the coordinate position. The number and the lines
will be erased when the mouse button will be released.

Select If you click-and-drag under this mouse mode, you will be able to draw
a temporary rectangle. The knots that lie within this rectangle when you
release the mouse button will be selected (and highlighted to show that
they are selected). If you then choose mouse mode Move knots, you will be
able to move all the selected knots in a single move.

Move knots If you click in one knot and grag the mouse, you will move the
knot to a new position. The final position can be affected by some restric-
tion, namely, the first and last knots cannot be moved horizontally (they
delimit the domain of the transformation, and this is fixed when the object
is created). Also, it is posible that you (or some programmer) have decided
that your knots have fixed vertical positions, see Knots options in the Trans-
form menu for more on this. If you have selected two or more knots using
the Select mouse mode, any click-and-drag action over any of the selected
knots will move vertically (and only vertically) all the selected knots. A
click in any other position will deselect all the knots. Remember that you
can Undo the knots change using the menu.

Add knots When this mouse mode is selected, any mouse click in a legal posi-
tion will create a new knot in that position and the transformation will be
recomputed and redrawn. You cannot place new knots outside the transfor-
mation domain, nor in the same vertical of a preexisting knot. Remember
that you can Undo the knots change using the menu.

Trash knots Clicking near a knot when this mouse mode is selected will remove
the knot and redraw the transformation graph. You cannot remove the first
and last knots. Remember that you can Undo the knots change using the
menu.
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Figure 11: A transformation window with vertically restricted knots, and his menu.

A.1.2 The Transform menu

When a transformation window is in use in your screen, you will be able to access
to his menu, see figure 11 (the menu can appear in the main menu bar or in the
window itself, this depend on the window system in use). We describe here the
items you will find in the menu, and some related questions.

Undo knot change Selecting this item will revert your transformation to the
previous state, as before you have made the last knot change. Only the
very last change can be undone.

Mouse mode This will pop up a dialog for changing the mouse mode. Usually
your will change the mouse mode by clicking directly in the little square
boxes in the lower part of the window.

Rescale plot This can be useful if some knot change has moved the knot outside
the graphing area. Selecting this item will recompute the vertical scale of
the graph to include all the knots in the graphing area.

Options This is the standard Options item for a LISP-STAT graph window. It
is for choosing background colours and other graphic features.

Knots options A dialog window will be presented to decide about three op-
tions. Mark the first check box if you want the knots to be forced to remain
in his horizontal position. The user will still be able to move the vertical
position of each knot, but not the horizontal one (see figure 11). Mark the

33



second check box if you want the knots be moved to equally spaced hor-
izontal positions within the limits of the transformation domain. Finally,
the third check box must be marked if you do want the knots be moved
vertically to get a constant transformation. The constant value will be the
average of the knots heights. In either case, the knots will be moved when
you click OK on the dialog.

Interpolation... In the transformation window, the user decide about the posi-
tion of the knots, and then the transformation is built by some interpolation
method. There are four different methods of interpolation implemented. In
the Step method, a step function is built using the knots positions, the func-
tion being constant in the intervals delimited by the mid points between the
horizontal coordinates of the knots. When the Linear method is selected,
the transformation is built simply joining the knots with segments. A Cu-
bic spline is a piecewise cubic polynomial. When this option is selected, a
cubic spline is computed such that it passes through the knots and in each
joinction the two polynomials have in common both the function value and
the two first derivatives. T'he last method, Bezier b-splines, is not properly
an interpolation method, the resulting curve not passing through all the
knots. In this case, the knots become handles to control the curve shape.
The transformation is built as a cubic spline such that passes through the
first and last knots and also through the midpoints of each consecutive
knots pair. The slope of the curve in these midpoints is forced to be the
same as the segment joining the knots. The advantage of this method of
interpolation is that moving a knot does not change the transformation
outside the two intervals adjacent to the knot.

Shift transformation This item provides a fast way of modifying the current
transformation by adding some number (or multiplying by some number)
to the vertical coordinates of all the knots at once. The number can be
positive or negative. Be careful not to give a value that can force the
transformation outside of his natural limits.

A.2 Using transformations from LISP-STAT programs

The transformation tool is contained in a file named transfor.1lsp. This file con-
tains code for two object prototypes, transf-proto and transf-window-proto.
Your program will comunicate only with the transformation object, a transf--
proto descendant, while the user will communicate only with the window trans-
formation, a transf-window-proto descendant. The communication between
the two objects will be transparent to you (and to the user, of course).
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(load "transfor")

; create the transformation and store it in variable mytransf
; here we don’t specify all the parameters for the call
(def mytransf
(make-transformation ...
:notice-to-owner (list originator :transf—has—changed)

o))

; this method will be called when the user change the transformation
(defmeth originator :transf-has-changed ()
(setf (slot-value ’transformed-data)
(send transf :transform (slot-value ’data)))
(send self :recompute-model))

Figure 12: A typical use of transformation objects.

Using transformation objects in a lisp program involves three steps: creating
the transformation object, creating the window in which the transformation is
shown and modified by the user, and asking the transformation object to trans-
form some values according the current state of the transformation. This last
step needs to be executed again whenever the user makes any change to the trans-
formation, so some mechanism is needed to automate it. The transformation is
created using the make-transformation function. The help documentation of
this function is very comprehensive, covering all the key parameters you can use
to taylor the transformation to suit your needs. The transformation window is
automatically created by default. You must provide an important key parame-
ter: notice-to-owner, a list of an object and the message that you want to be
sent to that object whenever some change occurs to the transformation.

A.2.1 Some examples

In KDE objects, transformations are implemented in such a way that the user
has complete control over it. Through a menu item (only accessible when vari-
able bandwidth is in use) the user pops up the transformation window. Inter-
nally, the message :create-bw-transformation is sent to the kde object. As
:notice-to-owner, a list consisting of the kde object itself and the message
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(make-transformation :domain (list someminimum somemaximum)
:title "It’s my own transformation"
:num-knots 3
:constrain-knots t
:initial-transformation #’log
:notice-to-owner
(list originator :transf-has-changed))

Figure 13: A more refined call to create a transformation object.

:redraw-window :force t is passed. This mean that every time that the user
makes some change to the transformation window, the KDE object will receive
this message, and the kernel density window will be redrawn, forcing recompu-
tation of it all.

For another example, let’s imagine that you have an object named originator
that works with some data that eventually need be transformed, and you want
to give the user the freedom to define the transformation in a non parametric
way. Your object will have some method, say recompute-model for doing all
the computation of the model that depend on data, and some slots, say data
and transformed-data, where this information is stored. Your program will
need to contain some pieces of code similar to the listing in figure 12. A more
complete call to make-transformation can include more parameters in the form
of key/value specification as shown in figure 13.

B Getting and running the software

B.1 XLISP-STAT and XLISP

Our KDE objects are build on XLISP-STAT, a statistical language developed
by Luke Tierney. It is an extension of XLISP, a lisp dialect developed by David
Betz. To XLISP, Luke Tierney has added some important features for statistical
programming. First, most of the numerical functions are vectorized: the same
functions apply to numbers as well as to vectors or arrays. Second, an object-
oriented paradigm has been included to support statistical modeling. And third,
XLISP-STAT includes graphical objects for easy building of user interfaces.
Following the terminology of the author, XLLISP-STAT is just an implementa-
tion of a generic specification, LISP-STAT. A full description of LISP-STAT can
be found in TIERNEY[90], where the author gives a more complete description
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of the software than those included in the documentation distributed with the
software.

XLISP-STAT is free software. It is currently available for UNIX/X11, Mac-
intosh and MS-Windows environments. It is possible to obtain both the source
code and some compiled versions by anonymous ftp to umnstat.stat.umn.edu in
the directory pub/xlispstat.

B.2 Getting KDE software

Once you have XLISP-STAT running, you will need some files to be able to use
KDE objects. KDE files can be fetch from

http://halley.upf.es/stat/kde. There you will find a README file with
more detailed and upgraded directions to install and run the software. There
is also a FILES file with the current contents of the directory. Once the files
are installed, you can follow the directions in section 3. Following is a brief
description of the files included in the current version of KDE.

runkde.lsp Loading this file is the normal way to access kde objects, it contains
some functions for creating kde objects.

kde.lsp This is the main file, contains definition of the central prototype object,
kde-proto, and his methods.

kde_conf.lsp Global var definitions and some utility functions.

calckde.lsp Contains numerical routines for computing kernel estimates and
several utility functions.

binning.1sp Contains routines for binning data following several methods of
binning and several criteria for outside values.

wkde.lsp Contains the code to implement wkde-proto object, the prototype
for windows that display KDE objects.

transfor.lsp Contains code to implement transf-proto and other transfor-
mation reated objects.

funnorms.lsp Contains some utilities for computing integrals and other func-
tionals.

plotline.lsp Contains a modified verison of the XLISP-STAT function plot-
lines.

goldsear.lsp Insome XLISP-STAT versions, the function golden-search is doc-
umented but not defined. This file contains a lisp version of it.

distrobj.lsp contains code for distrobj-proto, a primitive distribution ob-
ject prototype that allows easy building of mixtures.
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kdeaddpt.lsp A modification of a kde object to show all the copies of the kernel
function involved in the computation. Useful for better understanding of
kernel technology, and for fun.

There are also other files containing some kde objects with real data sets,
some of them quite popular: buf-snow.kde, chrondite.lsp, income75.1sp,
notes.kde, old-faithful.kde, Stamps.kde, Log-Suicide.kde.

B.3 A brief note about LISP syntax

To facilitate reading and understanding the pieces of lisp code included in the
paper we comment here some basics things about LISP syntax.

LISP is an interpreted language. The way the interpret works has three steps:
read—evaluate—print. The interpret reads an expression, evaluates it and prints
(or returns) the result of the evaluation. A LISP expression can be simple or
compounded. Simple expressions are variable names, numbers, strings and similar
objects. Compound expressions are surrounded by parenthesis and have a first
element that is the name of the function to be called, followed by the argument(s)
nedeed by the function call. As you can see in the following examples, the same
syntax template is used to add some numbers,

(+ 2 4 67)

for calling a mathematical function,
(sin 0.36)

to create a KDE object,
(make-kde-from-file "myfile.dat")
or to load a file

(load "afile").

When forming lisp names, any character can be used (parenthesis, quotes,
double quotes, comma, semi-colon and spaces are reserved). Is a common con-
vention to use rather long and self-explanatory names for LISP variable and
function names, putting a hyphen between words in such names. Also by conven-
tion, global variables (that are seldom used) have names surronded by asterisks,
specially if they are for system configuration. Semicolon are for comments, so
the rest of the line is ignored by the interpreter when finds a semicolon.

In normal LISP evaluation, the arguments are evaluated first and then the
function call is made over it. Thus, an argument can be in turn a compound
expression, and this can be nested to any needed level.

LISP provides a very flexible mechanism for defining functions. User-defined
functions can have a fixed number of arguments or can be declared to have
optional arguments. A special kind of optional arguments are key arguments as
used in some functions described above, see figure 13 for example. Key arguments
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are given in the function call as a sequence of pairs of :key and value. This allows
the user to specify some arguments while leaving the function to take the default
values to the non-given arguments.
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