Chapter 31
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analysis 18 concerned with the logical toundations
. care of this book, we give o vely short introduction o
of calculus, In the last two a‘hcqﬂ& |:~‘t:‘|  eal rather than complex numbers,
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discussion requires preparation, and this chapter provides the tools and hmglmgo. We
begin by explaining what rigour is and then proceed to a more thorough treatment of
lh;‘ real numbers. limits and continuity than we gave in Chapters 3 and 5.
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Before studving this chapter you may find it helpful to refresh your memory of Section 5.4.
When vou have studied this chapter you will understand:

e the Key properties of the real number system;
e the concept of boundedness, in the context of IR:
e the key facts about convergence of sequences of real numbers, and their proofs:
)

e the properties of continuous functions of a real variable, and their proofs
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As you must know by now, (a) 8 Out

the brackets 2 e Syieh e N interpreted as arbitrary real numbers; verifying tha
done ;llguh{-;nu; ;};,ds' for particular numerical Values. of z and y does not j
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standard notation for them: ¥V means ‘for all’ and 3 means ‘there exists’. For example.
(a) above may be written
(z+y)? =2°+y°+2zy Va,y €R,
while the fact that (b) is false may be expressed as follows:
dz,y € R such that (z + y)2 £ x* o y2.

The symbols V and 3 are known as quantifiers because they indicate the quantity of
cases for which a given statement is true.

Mathematical induction
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Th otions of set a;nd subset were introduced at the

e I
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;:"; cforms each element of A into an element of B The domain of f is the set A; as

e said in Chapter 3, the range of f is the set { f(x) : z € A}, which islsa szbsseet of B

A common abbreviation for ‘the mapping f from A to B’ is the mapping f: A — B II-l
chapter and the next, we shall refer to a mapping f only as f, and n<-:>t as f (:1:; or
f(a;),: the looser conventions of earlier chapters are useful for,many purposes, but
J for analysis. A function is a mapping whose range is a set of numbers: as we stated
:SectiOIl 3.4, this convention for distinguishing between functions and mappings 1S

symmon but not universal.
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Ordered pairs and lists of real numbers were also introduced in Chapter 3. The
notion of an ordered pair does not require that it consist of two real numbers,
. embers of the same set. Given two sets X and Y, the Cartesian product
x xY is defined to be the set of all ordered pairs (z,y), where z € X and y € Y. For
_ mple, if C is the set of all names of European capital cities, then (London, 4) € C XN
‘Notice that (7, Rome) is not a member of CUxN, since we are t@c’mg about ordered pairs;
" (7.Rome) is in fact a —ember of the set Nx C. Similarly, if X1, X2,. .., &n ar€ S€Ls,
" hen the Cartesian product X1 x XaX...x Xy is the set of all ordered. lists of the form
a2 ....n. Notice a connection between lists
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Exercises

b g [ B

Q Jwe Qsuchthatzr =w
R nx>-1VYneN.

S 3n € N such that nz > —1.

2

31.1.2 Prove by induction that
_ . LS
(1+a)"214+na-+ %n(n — 1)a

whenever ¢ > 0 and n € N. [This result can also be derived from the binomial
theorem, which can itself be proved by induction. |

31.1.3 Let I be an interval of real numbers, and let the function f: I — IR be concave.
Prove by induction that if 21, z», ..., x, are members of I and oy, ay,...,«a, are
positive numbers such that oy + ag + ... 4+ a;, = 1, then

f(()’]f] + QT2 Tttt (Xnmn) 2 a]f($]) e CXQf(JJz) +oaiyodte Oénf(fﬁn)..

3l.l14 let/=1zeR:0<z<2},J={z€R:1<z < 3}. llustrate in a single
diagram the sets [ x.J and J x I.

two are the laws of arithmetic an

rules of addition, subtraction, m
the numbers () and 1.



