1.3

Composite functions

Composition of functions

Consider the function in Example 1.16, $f(x) = \sqrt{x+4}$. When we evaluate f(x) for a certain value of x in the domain, for example, x = 5, it is necessary to perform computations in two separate steps in a certain order.

$$f(5) = \sqrt{5+4} \Rightarrow f(5) = \sqrt{9}$$
 Step 1: compute the sum of 5 + 4
 $\Rightarrow f(5) = 3$ Step 2: compute the square root of 9

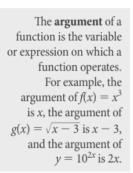
Given that the function has two separate evaluation steps, f(x) can be seen as a combination of two simpler functions that are performed in a specified order. According to how f(x) is evaluated, the simpler function to be performed first is the rule of adding 4 and the second is the rule of taking the square root. If h(x) = x + 4 and $g(x) = \sqrt{x}$, then we can create (compose) the function f(x) from a combination of h(x) and g(x) as follows:

$$f(x) = g(h(x))$$

= $g(x + 4)$ Step 1: substitute $x + 4$ for $h(x)$ making $x + 4$ the argument of $g(x)$
= $\sqrt{x + 4}$ Step 2: apply the function $g(x)$ on the argument $x + 4$

We obtain the rule $\sqrt{x+4}$ by first applying the rule x+4 and then applying the rule \sqrt{x} . A function that is obtained from simpler functions by applying one after another in this way is called a **composite function**. $f(x) = \sqrt{x+4}$ is the **composition** of h(x) = x+4 followed by $g(x) = \sqrt{x}$. In other words, f is obtained by substituting h into g, and can be denoted in function notation by g(h(x)) – read 'g of h of x.'

Start with a number x in the domain of h and find its image h(x). If this number h(x) is in the domain of g, we then compute the value of g(h(x)). The resulting composite function is denoted as $(g \circ h(x))$. See Figure 1.19.



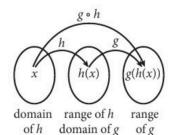


Figure 1.19 Mapping for composite function g(h(x))

The composition of two functions, g and h, such that h is applied first and g second is given by $(g \circ h)(x) = g(h(x))$. The domain of the composite function $g \circ h$ is the set of all x in the domain of h such that h(x) is in the domain of g.

Example 1.18

If f(x) = 3x and g(x) = 2x - 6, find:

- (a) (i) $(f \circ g)(5)$ (ii) Express $(f \circ g)(x)$ as a single function rule (expression).
- (b) (i) $(g \circ f)(5)$ (ii) Express $(g \circ f)(x)$ as a single function rule (expression).
- (c) (i) $(g \circ g)(5)$ (ii) Express $(g \circ g)(x)$ as a single function rule (expression).