Exercise 1.3

1. (a)
$$(f \circ g)(5) = f(g(5)) = f(\frac{1}{5-3}) = f(\frac{1}{2}) = 2 \cdot \frac{1}{2} = 1$$

(b) $(g \circ f)(5) = g(f(5)) = g(2 \cdot 5) = g(10) = \frac{1}{10-3} = \frac{1}{7}$
(c) $(f \circ g)(x) = f(g(x)) = f(\frac{1}{x-3}) = 2 \cdot \frac{1}{x-3} = \frac{2}{x-3}$
(d) $(g \circ f)(x) = g(f(x)) = g(2x) = \frac{1}{2x-3}$

2. (a)
$$(f \circ g)(0) = f(g(0)) = f(2 - 0^2) = f(2) = 2 \cdot 2 - 3 = 1$$

(b) $(g \circ f)(0) = g(f(0)) = g(2 \cdot 0 - 3) = g(-3) = 2 - (-3)^2 = 2 - 9 = -7$
(c) $(f \circ f)(4) = f(f(4)) = f(2 \cdot 4 - 3) = f(5) = 2 \cdot 5 - 3 = 7$
(d) $(g \circ g)(-3) = g(g(-3)) = g(2 - (-3)^2) = g(-7) = 2 - (-3)^2 = 2 - 49 = -47$
(e) $(f \circ g)(-1) = f(g(-1)) = f(2 - (-1)^2) = f(1) = 2 \cdot 1 - 3 = -1$
(f) $(g \circ f)(-3) = g(f(-3)) = g(2 \cdot (-3) - 3) = g(-9) = 2 - (-9)^2 = 2 - 81 = -79$
(g) $(f \circ g)(x) = f(g(x)) = f(2 - x^2) = 2 \cdot (2 - x^2) - 3 = 4 - 2x^2 - 3 = 1 - 2x^2$
(h) $(g \circ f)(x) = g(f(x)) = g(2x - 3) = 2 - (2x - 3)^2$
 $= 2 - (4x^2 - 12x + 9) = 2 - 4x^2 + 12x - 9$
 $\Rightarrow (g \circ f)(x) = f(f(x)) = f(2x - 3) = 2(2x - 3) - 3 = 4x - 6 - 3 = 4x - 9$
(j) $(g \circ g)(x) = g(g(x)) = g(2 - x^2) = g(2 - (2 - x^2)^2)$
 $= 2 - (4 - 4x^2 + x^4) = 2 - 4 + 4x^2 - x^4$
 $\Rightarrow (g \circ g)(x) = -x^4 + 4x^2 - 2$

3. In each question, when finding the domain of $f \circ g$, check the following two conditions:

- the input x is in the domain of g, because the first rule to be applied to x is g, the inside function of f(g(x)).
- the output g(x) is in the domain of f (the range of g must be either equal to or a subset of the domain of f).

The same applies when finding the domain of $g \circ f$: x must be in the domain of f, because the first rule to be applied to x is f, the inside function of g(f(x)), and f(x) is in the domain of g.

(a)

	f	g
Domain	$x \in \mathbb{R}$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}$	$y \in \mathbb{R}$

$$(f \circ g)(x) = f(g(x)) = f(2+3x) = 4(2+3x) - 1 = 8 + 12x - 1 = 7 + 12x$$

 $x \in \mathbb{R} \Rightarrow 2 + 3x \in \mathbb{R}$, this set of values is the same as the domain for *f*, so the domain of $f \circ g$ is also $x \in \mathbb{R}$.

$$(g \circ f)(x) = g(f(x)) = g(4x - 1) = 2 + 3(4x - 1) = 2 + 12x - 3 = 12x - 1$$

 $x \in \mathbb{R} \Rightarrow 4x - 1 \in \mathbb{R}$, this set of values is the same as the domain for *g*, so the domain of $g \circ f$ is also $x \in \mathbb{R}$.

(b)

	f	g
Domain	$x \in \mathbb{R}$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}, \\ y \ge 1$	$y \in \mathbb{R}$

$$(f \circ g)(x) = f(g(x)) = f(-2x) = (-2x)^2 + 1 = 4x^2 + 1$$

 $x \in \mathbb{R} \Rightarrow -2x \in \mathbb{R}$, this set of values is the same set of values as the domain for *f*, so the domain of $f \circ g$ is also $x \in \mathbb{R}$.

$$(g \circ f)(x) = g(f(x)) = g(x^2 + 1) = -2(x^2 + 1) = -2x^2 - 2x^2 - 2x^2$$

 $x \in \mathbb{R} \Rightarrow 1 + x^2 \ge 1$, this set of values is a subset of the domain of g, so the domain of $g \circ f$ is also $x \in \mathbb{R}$.

(c)

	f	g
Domain	$x \in \mathbb{R}, \\ x \ge -1$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}, \\ y \ge 0$	$y \in \mathbb{R}, \\ y \ge 1$

$$(f \circ g)(x) = f(g(x)) = f(1 + x^2) = \sqrt{1 + x^2 + 1} = \sqrt{x^2 + 2}$$

 $x \in \mathbb{R} \Rightarrow 1 + x^2 \ge 1$, this set of values is a subset of the domain of *f*, so the domain of *f* \circ *g* is also $x \in \mathbb{R}$.

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x+1}) = 1 + (\sqrt{x+1})^2 = 1 + x + 1 = x + 2$$

 $x \ge -1 \Rightarrow \sqrt{x+1} \ge 0$, this set of values is a subset of the domain of g, so the domain of $g \circ f$ is also $x \ge -1$.

fgDomain $x \in \mathbb{R},$
 $x \neq -4$ $x \in \mathbb{R}$
 $x \in \mathbb{R}$ Range $y \in \mathbb{R}, y \neq 0$ $y \in \mathbb{R}$

$$(f \circ g)(x) = f(g(x)) = f(x-1) = \frac{2}{x-1+4} = \frac{2}{x+3}$$

 $x \in \mathbb{R} \Rightarrow x - 1 \in \mathbb{R}$, but this set of values is not a subset of the domain of *f*. To be able to compose the two functions, the *x*-value, which is the input of *g* resulting in an output of y = -4, must be excluded from the domain of *g*.

 $x - 1 = -4 \Rightarrow x = -3$, so the domain of $(f \circ g)(x)$ is $x \in \mathbb{R}, x \neq -3$.

$$(g \circ f)(x) = g(f(x)) = g(\frac{2}{x+4}) = \frac{2}{x+4} - 1 = \frac{2-x-4}{x+4} = \frac{-x-2}{x+4} = -\frac{x+2}{x+4}$$

 $x \in \mathbb{R}, x \neq -4 \Rightarrow \frac{2}{x+4} \neq 0$, this set of values is a subset of the domain of g, so the domain of $(g \circ f)(x)$ is also $x \in \mathbb{R}, x \neq -4$.

(e)

	f	g
Domain	$x \in \mathbb{R}$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}$	$y \in \mathbb{R}$

$$(f \circ g)(x) = f(g(x)) = f(\frac{x-5}{3}) = 3 \cdot \frac{x-5}{3} + 5 = x - 5 + 5 = x$$

 $x \in \mathbb{R} \Rightarrow \frac{x-5}{3} \in \mathbb{R}$, this set of values is the same as the domain for *f*, so the domain of $f \circ g$ is also $x \in \mathbb{R}$.

$$(g \circ f)(x) = g(f(x)) = g(3x+5) = \frac{3x+5-5}{3} = \frac{3x}{3} = 3$$

 $x \in \mathbb{R} \Rightarrow 3x - 5 \in \mathbb{R}$, this set of values is the same as the domain for *g*, so the domain of $g \circ f$ is also $x \in \mathbb{R}$.

	f	g
Domain	$x \in \mathbb{R}$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}$	$y \le 1, \\ y \in \mathbb{R}$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt[3]{1 - x^2}) = 2 - (\sqrt[3]{1 - x^2})^3$$
$$= 2 - (1 - x^2) = 2 - 1 + x^2 = x^2 + 1$$

 $x \in \mathbb{R} \Rightarrow \sqrt[3]{1-x^2} \le 1$, this set of values is a subset of the domain of *f*, so the domain of *f* or *g* is also $x \in \mathbb{R}$.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

(f)

(**d**)

$$(g \circ f)(x) = g(f(x)) = g(2 - x^3) = \sqrt[3]{1 - (2 - x^3)^2} = \sqrt[3]{1 - (4 - 4x^3 + x^6)}$$
$$= \sqrt[3]{-x^6 + 4x^3 - 3}$$

 $x \in \mathbb{R} \Rightarrow 2 - x^3 \in \mathbb{R}$, this set of values is the same as the domain for g, so the domain of $g \circ f$ is also $x \in \mathbb{R}$.

(g)

	f	g
Domain	$x \in \mathbb{R}$,	$x \in \mathbb{R}$,
	$x \neq 4$	$x \neq 0$
Range	$y \in \mathbb{R}$	$y \in \mathbb{R}$,
		$y \neq 0$

$$(f \circ g)(x) = f(g(x)) = f(\frac{1}{x^2}) = \frac{2\frac{1}{x^2}}{4 - \frac{1}{x^2}} = \frac{\frac{2}{x^2}}{\frac{4x^2 - 1}{x^2}} = \frac{2}{4x^2 - 1}$$

 $x \in \mathbb{R}, x \neq 0 \Rightarrow \frac{1}{x^2} > 0$, but this set of values is not a subset of the domain of *f*. To be able to compose the two functions, the *x*-value, which is the input of *g* resulting in an output of y = 4, must be excluded from the domain of *g*.

$$\frac{1}{x^2} = 4 \Rightarrow \frac{1}{4} = x^2 \Rightarrow x = \pm \frac{1}{2}, \text{ so the domain of } f \circ g \text{ is: } x \in \mathbb{R}, x \neq 0, x \neq \pm \frac{1}{2}.$$
$$(g \circ f)(x) = g(f(x)) = g(\frac{2x}{4-x}) = \frac{1}{\left(\frac{2x}{4-x}\right)^2} = \frac{(4-x)^2}{4x^2}$$

 $x \in \mathbb{R}, x \neq 4 \Rightarrow \frac{2x}{4-x} \neq 0$, but this is not a subset of the domain of g. To be able to compose the two functions, the x-value, which is the input of f resulting in an output of y = 4, must be excluded from the domain of f.

$$\frac{2x}{4-x} = 0 \Rightarrow 2x = 0 \Rightarrow x = 0$$
, so the domain of $g \circ f$ is: $x \in \mathbb{R}, x \neq 4, x \neq 0$.

	f	g
Domain	$x \in \mathbb{R}$,	$x \in \mathbb{R}$,
	$x \neq -3$	$x \neq -3$
Range	$y \in \mathbb{R}$,	$y \in \mathbb{R}$,
Italige	$y \neq -3$	$y \neq -3$

 $(f \circ g)(x) = f(g(x)) = f\left(\frac{2}{x+3} - 3\right) = \frac{2}{\frac{2}{x+3} - 3 + 3} - 3 = 2 \cdot \frac{x+3}{2} = xx \in \mathbb{R},$ $x \neq -3 \Rightarrow \frac{2}{x+3} - 3 \neq -3, \text{ this set of values is the same as the domain for } f,$ so the domain of $f \circ g$ is also $x \in \mathbb{R}, x \neq -3.$

(h)

$$(g \circ f)(x) = g(f(x)) = g(\frac{2}{x+3} - 3) = x$$

 $x \in \mathbb{R}, x \neq -3 \Rightarrow \frac{2}{x+3} - 3 \neq -3$, this set of values is the same as the domain for g, so the domain of $g \circ f$ is also $x \in \mathbb{R}, x \neq -3$.

1	•	١	
l	l	J	

	f	g
Domain	$x \in \mathbb{R}, \\ x \neq 1$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}, \\ y \neq 1$	$y \in \mathbb{R}, \\ y \ge -1$

$$(f \circ g)(x) = f(g(x)) = f(x^2 - 1) = \frac{x^2 - 1}{x^2 - 1 - 1} = \frac{x^2 - 1}{x^2 - 2}$$

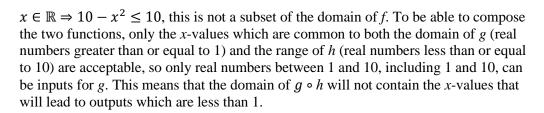
 $x \in \mathbb{R} \Rightarrow x^2 - 1 \ge -1$, but this set of values is not a subset of the domain of *f*. To be able to compose the two functions, the *x*-value, which is the input of *g* resulting in an output of y = 1, must be excluded from the domain of *g*.

$$x^{2} - 1 = 1 \Rightarrow x^{2} = 2 \Rightarrow x = \pm \sqrt{2}, \text{ so the domain of } f \circ g \text{ is } x \in \mathbb{R}, x \neq \pm \sqrt{2}.$$
$$(g \circ f)(x) = g(f(x)) = g\left(\frac{x}{x-1}\right) = \left(\frac{x}{x-1}\right)^{2} - 1 = \frac{x^{2}}{(x-1)^{2}} - 1$$
$$= \frac{x^{2} - (x^{2} - 2x + 1)}{(x-1)^{2}} = \frac{2x - 1}{(x-1)^{2}}$$

 $x \in \mathbb{R}, x \neq 1 \Rightarrow \frac{x}{x-1} \neq 1$, this set of values is a subset of the domain of g, so the domain of $g \circ f$ is also $x \in \mathbb{R}, x \neq 1$.

		g	h	
	Domain	$x \in \mathbb{R}, \\ x \ge 1$	$x \in \mathbb{R}$	
	Range	$y \ge 0$	$y \in \mathbb{R}, \\ y \le 10$	
$(g \circ h)(x) =$	= g(h(x)) = g(h(x))	$(10 - x^2) = \sqrt{2}$	$\sqrt{10 - x^2 - 1} =$	$\sqrt{9-x}$

4. (a)



 $10 - x^2 < 1 \Rightarrow 9 < x^2 \Rightarrow x < -3, x > 3$, so the domain of $g \circ h$ is: $-3 \le x \le 3$.

The outputs of $g \circ h$, corresponding to inputs taking values from the set $\{x: -3 \le x \le 3\}$, will be elements of the set $\{y: 0 \le y \le 3\}$, so the range of $g \circ h$ is $0 \le y \le 3$.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

(b)
$$(h \circ g)(x) = h(g(x)) = h(\sqrt{x-1}) = 10 - (\sqrt{x-1})^2 = 10 - x + 1 = -x + 11$$

 $x \ge 1 \Rightarrow \sqrt{x-1} \ge 0$, this is a subset of the domain of *h*, so the domain of $h \circ g$ is also $x \ge 1$.

The range of $h \circ g$ is $y \le 10$, as the restriction on the domain of *h* does not impact the range of the quadratic $y = 10 - x^2$.

5. (a)

	f	g
Domain	$x \in \mathbb{R}, \\ x \neq 0$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}, \\ y \neq 0$	$y \in \mathbb{R}, \\ y \le 10$

$$(f \circ g)(x) = f(g(x)) = f(10 - x^2) = \frac{1}{10 - x^2}$$

 $x \in \mathbb{R} \Rightarrow 10 - x^2 \le 10$, this set of values is not a subset of the domain of *f*. To be able to compose the two functions, the *x*-value, which is the input of *g* resulting in an output of y = 0, must be excluded from the domain of *g*.

$$10 - x^2 = 0 \Rightarrow 10 = x^2 \Rightarrow x = \pm \sqrt{10}$$
, so the domain of $f \circ g$ is: $x \in \mathbb{R}, x \neq \pm \sqrt{10}$.

The outputs of $f \circ g$ will be elements of the set $\{y: y \in \mathbb{R}, y \neq 10\}$, as the input of g cannot be 0, so the range of $f \circ g$ is: $y \in \mathbb{R}, y \neq 0$.

(b)
$$(g \circ f)(x) = g(f(x)) = g(\frac{1}{x}) = 10 - \frac{1}{x^2}$$

 $x \in \mathbb{R}, x \neq 0 \Rightarrow \frac{1}{x} \neq 0$, this set of values is a subset of the domain of g, so the domain of $g \circ f$ is also $x \in \mathbb{R}, x \neq 0$.

The outputs of $g \circ f$, corresponding to inputs taking values from the set $\{x: x \in \mathbb{R}, x \neq 0\}$, will be elements of the set $\{y: y \in \mathbb{R}, y < 10\}$, (y = 10 is obtained for x = 0, which is not in the domain), so the range of $g \circ f$ is: $y \in \mathbb{R}, y < 10$.

- 6. In each of the following, try to identify the rules transforming the input x into the expression given by f(x), and take into consideration the order in which the two functions are combined.
 - (a) $f(x) = (x + 3)^2 \Rightarrow 3$ is added to x, and the result is squared $\Rightarrow h(x) = x + 3, g(x) = x^2$
 - (b) $f(x) = \sqrt{x-5} \Rightarrow 5$ is subtracted from x, and the result is square rooted $\Rightarrow h(x) = x - 5, g(x) = \sqrt{x}$
 - (c) $f(x) = 7 \sqrt{x} \Rightarrow x$ is square rooted, and the result is subtracted from 7 $\Rightarrow h(x) = \sqrt{x}, g(x) = 7 - x$
 - (d) $f(x) = \frac{1}{x+3} \Rightarrow 3$ is added to x, and the reciprocal of the result is computed $\Rightarrow h(x) = x + 3, g(x) = \frac{1}{x}$

- (e) $f(x) = 10^{x+1} \Rightarrow 1$ is added to x, this result is then the power to which 10 is raised $\Rightarrow h(x) = x + 1, g(x) = 10^x$
- (f) $f(x) = \sqrt[3]{x-9} \Rightarrow 9$ is subtracted from x, and the result is cube rooted $\Rightarrow h(x) = x - 9, g(x) = \sqrt[3]{x}$
- (g) $f(x) = |x^2 9| \Rightarrow 9$ is subtracted from the square of x, and the absolute value of result is taken $\Rightarrow h(x) = x^2 9$, g(x) = |x|
- (h) $f(x) = \frac{1}{\sqrt{x-5}} \Rightarrow$ the square root of the difference between x and 5, and the reciprocal of the result is computed $\Rightarrow h(x) = \sqrt{x-5}, g(x) = \frac{1}{x}$

		f	8
	Domain	$x \in \mathbb{R}$,	$x \in \mathbb{R}$
		$x \ge 0$	$\chi \in \mathbb{R}$
	Dongo	$y \in \mathbb{R}$,	$y \in \mathbb{R}$,
	Range	$y \ge 0$	$y \ge 1$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1 + 1} = \sqrt{x^2 + 2}$$

 $x \in \mathbb{R} \Rightarrow x^2 + 1 \ge 1$, this is a subset of the domain of *f*, so the domain of *f* \circ *g* is also $x \in \mathbb{R}$.

-	
1	h١
•	V)

7.

(a)

		f	8
	Domain	$x \in \mathbb{R}, \\ x \neq 0$	$x \in \mathbb{R}$
	Range	$y \in \mathbb{R}, \\ y \neq 0$	$y \in \mathbb{R}$
(r)	-f(q(x)) - f(q(x))	$(r+3) = \frac{1}{1}$	_

$$(f \circ g)(x) = f(g(x)) = f(x+3) = \frac{1}{x+3}$$

 $x \in \mathbb{R} \Rightarrow x + 3 \in \mathbb{R}$, but this is not a subset of the domain of *f*. To be able to compose the two functions, the *x*-value which is the input of *g* resulting in an output of y = 0 must be excluded from the domain of *g*.

 $x + 3 = 0 \Rightarrow x = -3$, so the domain of $f \circ g$ is $x \in \mathbb{R}, x \neq -3$

(c)

	f	g
Domain	$x \in \mathbb{R},$ $x \neq \pm 1$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}, \\ y \neq 0$	$y \in \mathbb{R}$

$$(f \circ g)(x) = f(g(x)) = f(x+1) = \frac{3}{(x+1)^2 - 1} = \frac{3}{x^2 + 2x + 1 - 1} = \frac{3}{x^2 + 2x}$$

 $x \in \mathbb{R} \Rightarrow x + 1 \in \mathbb{R}$, but this set of values is not a subset of the domain of *f*. To be able to compose the two functions, the *x*-values, which are the inputs of *g* resulting in the outputs $y = \pm 1$, must be excluded from the domain of *f*.

 $x + 1 = \pm 1 \Rightarrow x = -1 \pm 1 \Rightarrow x = 0, x = -2,$ so the domain of $f \circ g$ is $x \in \mathbb{R}, x \neq -2, x \neq 0$

(d)

	f	g
Domain	$x \in \mathbb{R}$	$x \in \mathbb{R}$
Range	$y \in \mathbb{R}$	$y \in \mathbb{R}$

$$(f \circ g)(x) = f(g(x)) = f(\frac{x}{2}) = 2 \cdot \frac{x}{2} + 3 = x + 3$$

 $x \in \mathbb{R} \Rightarrow \frac{x}{2} \in \mathbb{R}$, this set of values is the same set of values as the domain for *f*, so the domain of $f \circ g$ is also $x \in \mathbb{R}$.