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256 g 4 a 5| and s and t are any two numbers such that s + ¢ = b. The
IAX A = i ¢ ‘
= |yl eaning as ¢z, y). , _
Exercises . ion (\a+ ub)T . whe"e" Euz) has the SZT;rTlhat ¢ — t, their common value must be b/2; thep Ais
13.3.1 By multiplying out the brackets in the expression (Aa + ub) " (Aa + 1h), Prove 14 1 l, eziness‘o? ge the C;nttie coefficients a. b. ¢ of the quadratic form, as the matrix
st v & . \ e ~ l y
x ~ I h that ||al| = ||b]| = 1, then — \ [FW™ " nique
13.3.2 Show that, ifa and b are u‘)\ﬁctor? T|l:f'| 5 a]‘l]d” bl hen —| < aly <) ' dclef‘“m 4 uniq 7 945
Give examples where n = 2, |ja]| = [[D] | bl
@) aTb=1 (b)a’b=-1; (c) a'b=0; (d) 0<alh <1.

iri 1 S€,
-d Pyt hat s = t is the same as requiring that A be its own transpo
o n ‘ S -
imensi | j em: if y conditio
13.3.3 Prove the fOHO\\'ing n lmcnﬁonal version of hagoras theor 1 i and |

i ' erally, a symmetric matrix of
lmposiﬂg ﬂ? h this pIopery s sale 2 Pe ;y::lTlfttg:t i‘;nz A.yNotice that any diagonal
are oxthostod s wecion Ry ' a a“ixi:’ c‘l[eﬁned to be an 7% '; lr“ill?c':“i(demity matrix 1 is symmetric. . 1
hu = v = [ufl* + v ord:zrri :is gymmetric; 10 pagtec:: (;uadratic form in two variab_les gl ; y), :11::: :lsuz);ar;t( 1);
| We have s}mowﬂ.)‘ha;’tgix A satisfying (13.10). Now consider the ge
13.3.4 Prove that the determinant of an orthogonal matrix is either 1 or —1. Show thar ,' one symmetric 2 R & m
both cases can occur. /

13.3.5 In Exercise 11.2.7, you were asked to find the 2 x 2 matrix that describes ant-

. % . Tyxo + €0L3 + f.l’g;m.
q(r, Lo, L3) = axry 4 b.I'.z =+ €3 +d 1

clockwise rotation about the origin through 45 degrees. Verify that this is an |

orthogonal matrix.

_AT. then there is exactly one
e constants. lLet X = [er 22 73l the
where a,b,¢.d. €, f a.r (x) = x¥ Ax, namely
metric 3% 3 matrix A such that g
13.3.6 Give an example of a 3 x 2 matrix U such that U"U = I,. Is it an orthogonal 2 - 9 ef2 |
matrix? a df .
13.3.7 Let gz b J2|:
I 2 1 Le/2 iz 2 Iy 1S
u=|-1|,v= 2 . W= 1]. dl' ﬁcformin.nvariables;I'.l.‘.r'z,----fu
- = ; All of this may be generalised. A qud a
Verify that any two of the three 3-vectors u, v, w are orthogonal. Find scalars ‘ defined to be an expression of the form
A, jt, v such that [Au pv vw| is an orthogonal matrix. — xT AX,
JbiEet By requiring that
: matrx. 2
13-4 Qllad i f . . T and A is a .symmemc nxn
ratic forms and symmetric matrices where x = [#y o2 ... Tn)

ients of 77,
A be ined by the coefficients Of T
symmetric, we ensure that A is uniquely determin

: +< written out in fulls
7123 and 50 on when the quadratic form is :::“i:“me : he
for the special cases n = 2 and 1t ='3v“‘.", - ccussed in more detail 1
quadratic forms and symmetric matrices 13 discu

this chapter.

In Chapter 4 we defined a quadratic function to be a function of the form
f(2) = az® + br + ¢
where o, b, ¢ i |
%0, c are constants. A slight generalisation of this is the expression

31z, y) = az? + by + ey,
which is known as a

uadrati : g b . |
redléces to f(z) if we get y'imlc. form in the two variables » and y. Notice that glz.y)
Y the rules of matriy multiplication, we may write

Definite and semidefinite quadratic forms

4, we devoted e is no direct
When we discussed quadratic functions n 9"?"“’ 4’ 3
fuestion whether a function f(z) was POSH7E o (q)
Malogue of this property for quadmﬁg foms:ﬁ ‘ -’,q
9'x). However, given a quadratic form "l_-(ﬂ’ positiv
"on-zero vector x; if so, we say that q(x)1s 2P

9.y) = 2" Ag (13.10)
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Example 1 A quadratic form in n variables zy,.... x, thatis obviously POsiti
. i
is > Ve defiy,
2 2 2 ite
ry+ax2t .- + &y
|2 in the preceding section

Recall that this is what we called ||x

The quadratic form g(x) is sai
vector x. Every positive definite quadratic form is positive semidefinite,
. n (he Q(he'r

hand, it is easy to find quadratic forms which are positive semidefinite byt
Ot posiy
"IVQ

definite.

Example 2 Consider the quadratic form in three variables

4 b’ 3 2 '., .
l“.l']..r’_’,.rj) =Ty T .1'2 <+ J‘:‘ — 2,!‘2,],‘3_

This can be written as zj + (72 — x3)* which, being a sum of squares. ;
negative. Therefore g(x;. x2,x3) is positive semidefinite; it is not positiss‘ (;S s
€ definjt

(U

because ¢(0,1.1) = 0.
We say that a quadratic form ¢(x) is ne i i see i
: : ; : gative semidefinite if —g(x) i -
semidefinite; this happens if and only if ¢(x) < 0 for every vector x S(ill(n);])a:ypo(s"m
; L q(x) is

said to be negative definite if —¢(x) is positive definite.
Many quadratic forms are neither positive semidefinite nor negative semidefini
nite,

9

-

Example 3 The quadratic form
q(.n..r-_:) = .t%) — &5

is neither positive semidefinit '
e nor nega i #e of
a(1.0) = 1. gative semidefinite, since ¢(0,1) = —1 and
The terms positiv : :
oo matricegzss"::/ :“dzﬁnne.hnegauve definite and so on are often applied to sym
: s to the correspondi : g
matrix A is sai e orresponding quadratic forms. Thus a symm
d to be positive definite if x* Ax > ( whenever x # 0 pO:it?ve semfd(:fc
) 3

inite if x "' Ax > 0 -
For instance, the si‘:;;'i;and negative (semi)definite if —A is positive (semi)definite
) ¢ matrices associated with the quadratic forms of Examples

1, 2 and 3 are respectively
d [ 1 0 }
0 -1]|°

The first of these ices is posi
matrices is positive definite (for all n), the second is positive semidef

1
In- 0 1 =]
0 -1 1

e d 1 e 1

semidefinite,

LN * (e
d to be positive semidefinite if q(x) > mnued syn

D SYMMETRIC MATRICES

undfadc f .
ow do we test whether it is positive definite, negative defi
» ‘e definite

ing
P catic form: hOW! ot
metimes work from first principles as in the examples ab
above.

a Ut ve can SO
we use st

u'nclric matr
forms thcmselves.

dratiC
matrix is positive definite if and only if its diagonal entries are

ts determinant is positive.

andard tests; these are most easily stated in terms of th
x, but of course they translate immediately into results acb(z:s-
We begin with symmetric matrices of order 2 >

the QU2
5.2 symmetric

- A 1
(@ 't:o 1 positive and i
0 symme"'ic matrix is positive semidefinite if and only if its diagonal entries
®) ;.bo[h “on-negative and its determinant is non-negative.
ar
is negative definite if and only if its diagonal entries are

metric matrix
ve and its determinant is positive.

atrix is negative semidefinite if and only if its diagonal entries
e and its determinant is non-negative,

2% 2

poth negati
(d 2x%2 symmetric m
are both non-positv

le 4 Let
i ey,
i 1 2-tl°
metric and det A = 3 — 2. 1f =3 < t < V3, the determinant
thus A is positive definite. If t = +/3, A

al entries are positive:
e definite. If |t| > V3, det A < 0,50 A is

efinite but not positiv
emidefinite nor negative semidefinite.
the quadratic form

Then A is sym
and both diagon
is positive semid
neither positive s
Since 1 < V3 < 2, these results imply that

323 + 23 + 20 L2
is positive definite, while the quadratic form Az3 + 232 1S neither positive

semidefinite nor negative semidefinite.
symmetric matrices are valid. We

‘ \ We now discuss briefly why these tests for 2x2
focus on (a). Consider the symmetric matrix
mi

a S
A= { $ c\
_J . -
and the associated quadratic form
d(tsy) = s + desy + o

positive definite: we need these

ﬂ:q(l 0) and ¢ = . : 'tﬂXtObe:
, y = q(0,1): for our ma
diagonal entries to be positive. ;
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2 (63 4 .l ave A
Fo g )3 .qric matnx is posinve definite if and only if its leading principal
: ST o 2 cipa
To see the relevance of the determinant, LOl)bldCl"(hC case where g - ,, _ SAn T o all posm\'e- P
155 TO verify (a) in this case, we need 10 show that q(z, y) = ¢, =k The @) inors ar . .
det A= e 4 : r 31 In fBCl. or a“ { N n A Sy‘“me(nc ma[nx
other than (0,0 if and only it 8= < & ' (&, ) 1p|9" 3%
o(ny) =2 + 285+ = (x+sy)t + (1= )y e Fok A
e ' 1 g o
by completing the square. This is clearly positive if s < l and at least one of it
is not zero; while if s* = 1 we can make q(x.y) non-posmve by setting r — and, ; . :
Thus (a) holds for this matrix. The proofs of (a)-(d) in the general case COnsi's'( b=y sefmite ¢ and only if %hg fO\\O_‘ﬁ{lﬂs three conditions are met: f > 0, fg > |
elaborate versions of the same argument. of Moy A posil“’c ¢ minant of the matrix is pQSluve. .
. pd the deu(a') < often implemented in the following form:
he &5 ) et 4.
' o symmetric matrix is positive definite if and only if it can be reduced
E | @) AP gaus cian elimination, without row exchanges, to an upper triangular matrix
by | entries are all positive.

Higher dimensions
se the tests (a)-(d) 10 matrices of order n, we need some definitions

atrix A is a matrix obtained from A by deleting some (
- none) of its columns. A principal submatrix of :r none)
brained using the rule that the kth row of A is demedsfluare
ed. A leading principal submatrix of 5 if ang
last m rows and columns, for soﬁ:amm

To generali
A submatrix of am
of its rows and some (0

matrix A isa submatrix o
kth column of A is dele

only if the
matrix A is a submatrix obtained by deleting the
For example, if
a b ¢

pal submatrices of A are its three diagonal entries a, ¢, w (considered
3 as

then the princi
| % 1 matrices), the three 2 x 2 matrices

{ a b } a ¢ q r
P q > u w|’ U w ]
and A itself. The first, fourth and seventh of these matrices are the leading principal

submatrices of A.
A e .
inor of a square matrix A is the determinant of a square submatrix of A; a
)

rl::::;pi:l [:;ix:ior is the determinant of a principal submatrix and a leading principal
civen ihe lead;:crm"nap[ ofa‘ leading principal submatrix. In the 3 x 3 example just
; g principal minors of A are a, ag — bp and det A; the other principal

minors are ¢, w, aw — cu and qu - rv
Tests (a) a 2% i
) and (b) for 2x 2 symmetric matrices generalise as follows:

(@) An nxn symmetric Sl
mat » WL,
o rix is positive definite if and only if its principal minors

(b) Aﬂ nxn symme[ri 4
€ matnx i iti . .
G is positive semidefinite if and only if its principal minors

These tests are
usuall
the following; y cumbersome to apply. A more convenient version of (2) is

whose diagond
, contrast, non-negati\.n‘ty of t
etric matrix 18 positive se

1.0, —1 has

les (¢) and (d) to nxn symmetric matrices. However,
ss or semidefiniteness by applying (a')

he leading principal minors does not guarantee that
midefinite; for example, the 3 x3 diagonal matrix
leading principal minors 1,0,0 but is not positive

alise ru

emidefinite:
for negative definitene

Itis ssible to gener
jtis usually casier to test
or (b) 1O the matrix — A

Three propositions
we end this section with three general propositions about positive definite and semidef-
they are good {llustrations of the

inite symmetric matrices. We give the proofs because
use of simple logical reasoning employing the algebra of inner products, but the reader
may omit them without loss of continuity.
tive semidefinite symmetric matrix, x a vector. Then

Proposition 1 Let A be a posi
T Ax > 0 if and only if Ax # 0.
- 0, then obviously ¥ # 0. Now suppose ¥ # 0; we \':'ish
Since A is symmetric, ¥’ = < A: hence the expressions
al to y'y. Therefore, for every scalar A,

Ty — Ty + Ny AY.

‘PROOF Lety = Ax. If xTy

to show that x*y > 0.
yTAx and x" Ay are both equ

(x = Ay) A(x = Ay) =
Since A is positive semidefinite, the {eft-hand side of this equation is nON-NEE"
ative, Thus
Ty > Ae2yTy - W' AY) ;
- - t
for any real number A, But sincey #0,¥'y > ¥ We may therefore choose ATO
Tay < 2yLy. HenceroY >0.

be positive but sufficiently small that Ay

R
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position 2 A sw_.'mmcm'c matrix 1s

definite and invertible. | |
sitive semidefinite symmetric matrix. By Proposition | N

proOF Let A bed PO‘d only if Ax # 0 for every NON-ZET0 N—Vector x. The pro o
2 (lt;?lzl:\:;!:'::[:n the fact that a square matrix Is invertible if and onlp(:‘llion
now |

Yif
non-singular. is

positive definite if and only if it is Posiy
VQS{ ,
15

Proposition g IfAisa positive definite s_vmmetric matrix, so is A ',
po .

prooF Let A bed positive definite symmelric' matrix. By PmPOSillion 2, A1 o
. s vartible with inverse A it remall’ns to show that A is symme( : 1515
and. ls Ins\(;'nideﬁniu': Now (A -1yT — (A")~! for any invertible matrix Ang and
sitive se : ) M M X 2

5,0,'5 case (A" -l=A | since A is Symmetric; hence (A~1)T = A-! » but i

¢ . r‘ h t h "I.as reqt-lir(!d
To complete the proof, let X be any vector; we wish to show that xTA -1y -, ",

Letw=A" Ix. Since Alis symmelriC. wi = x"A ', Therefore
TA Ix=wx= w Aw,

which is non-negative because A is positive definite.

Exercises

13.4.1 Show that, if a is a 2-vector, then aa’ is a 2x 2 symmetric matrix. How do yoy
think this result generalises?

13.4.2 A data set consists of n observations on two variables x; and x2; the ith observa.
tion is denoted (xy;, z2i)- Let X be the nx2 matrix whose ith row is [z}, zy]*
Caleulate the matrix X" X, expressing its entries in $--notation, and verify that
it is symmetric.

13.4.3 Prove that if A is a symmetric matrix, so is BT AB.
13.4.4 Show directly from the definitions that the quadratic form
qlxy.x2,23) = .rf <+ .'I.‘r:‘: + J‘% — XT3
is positive definite. Write down the associated symmetric matrix.
13.4.5 Determine the symmetric matrix A such that, for every 2-vector X,
223 + 3x3 + 42120 = X TAX

Use the test given in the text to show that the matrix A is positive definite.

13.4.6 Determine the values of ¢ for which the symmetric matrix [ 2 2] 15
ZiE

*This notation, which is st ;
. ' andard in the statistical lit T ey -
in that the second subscript indicates the row and the i erathmer:,dfepam from the usual one for ma

gt LOIHTHNW

midefinite but not positive definite;

(@) pos--

) PO definite;

7 negd 2 mideﬁ"“e but not negative definite;
1lli\'e 5

efiniteness of the symmetric matrices

7 DE e ey ! 3 -1 1 =1 {0
1 : T ) (o B s 5 Yt
= 9 9 1 250 () VRS |
1 FAL T

C is an 1% J matrix. Show that C' C is a positive semidefinite symmetric
' o.w also that CTC is positive definite if the columns of C are linearly
dent. What restriction on 1 and k does this condition impose?
ent.

prob\ems on Chapter 13

pe the parallelogram in the zy-plane whose vertices have coordinates (0,0),

3-1. Let S F 4 and (a+¢ b4 d). Suppose that a, b. c. d are all positive. Show that the

(a.b)s g 1(.; s lad—bel by enclosing G in a rectangle and subtracting the surrounding
rea 0
area.

l 2. (@) L&t ay az 03

. g A I B
l A= @ by ba
, g 2 @&

| ' ‘< cinoular. In Problem 12-3 you were
' suppose B 15 non-singular and A is singu .
aslz:)d to prove that any change in the (3,3) entry transforms A mtg a:
‘nvertible matrix. Give another proof of the same result, by expanding det

by its third row. - ' .
(i) Sketch a proof of the following proposition: any singular sq

be transformed into an invertible matrix by arbitrarily small changes to 1ts
diagonal entries. :
(HinT First prove the proposition for 2 %2 matrices. Qﬁl \lfxp ﬂ\‘:i:;‘%:w
ment of (i) to extend the proposition to 3x3 mamcesi : u:::e et
the same logic may be used to prove the proposition 1or 54
higher order.]
(iii) Explain why the proposition of (if) ceases to be true
lar’ and ‘invertible’ are interchanged. i ormal squae
[This problem shows that invertible matrices Gaﬂbgo?m o :
matrices and singular matrices as PECHe ones. YO 1 upless one has 2 good
applications to assume that square matrices are invertible ¢
reason to suppose otherwise.}

when the words ‘singt-
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| show that Q(b) is minimised when b = b,
v

13-3, This problem develops further the n-good input-output mode} of Probigy
iy

and 12-4. Notation is as in those problems. |
. : : ises easily to the case where the data set

Suppose each Industy uwchasasmlzg::su:o;n‘:lmrig‘ ® Produced goog, i< (Al of this ﬁnzr:laﬂables Uy @1y, 0k In particular, the m:o m :Wobm

also non-produced goods su FRananCH materials; |ot ‘heqm‘""bl B ations onhere ‘he function to be fitted is of the form

inputs, per unit of gross output of j, be c;. Let p, be the price of gooa' sy o1 o0 ¥

down an expression for the cost ot: producing each unit of 8T0SS outp, 3 Wiy . m by Bay o b

j. Derive a system of linear equations which must hold if g)) indust t Of grog e

break even (price equals average cost).  Exay, s be treated in this framework by letting k = 3, zy; = 1 for all i.)

Let ¢ be the vector with components cy, ..., ¢ and let p be the price may

companents py. ..., ps. What properties must the input-outpu Matriy A.m p {13

if, for every vector ¢ with non-negative components, there is g .
vector p of non-negative prices such that all industries break ,m ,
these properties related to the answer to Problem 12-4? e

13-4. This problem is concerned with the most popular of all econometrie W
least-squares estimation.

Suppose you have a data set consisting of n observations on three Variables
y, %1, x3; the ith observation is denoted [y, #y 2%). You wish to find a linesr

.k " ._."n‘ -

‘ul'cuo'l Of the fo‘ul ~ b ' :.- . P m" "P..’.? &-y- ';’ ‘1) - ot T .‘

. R . j V0 ‘1”. J - o ¥ .‘n." - p. g S
which fits the data as well as possible in the following sense: by and b; are chosen . B G e
s0 as to minimise the expression Ppew v ":‘;,ﬂ'._‘:, ;" R T g Pk

re
o = i Rl e -
- » b Jonms <18 8wl
-

Q(by, by) = E(y. - by -b‘jmy)a. 8o/ el Y A TR &

wq'td\eni-:ectorwhoseithcomponemisy‘,xme n x 2 matrix whose ith | - - ‘ o b
FOW 1S {2y, x> Assume that the columns of X are linearly independent. leth : AN e
bethe?-vector[b. by T. AN ; N 4 | s gt A
(D) Show that Q(b) = (y — Xb) (y ~ Xb).
(i) Suppose that b* is a 2-vector such that

»
4y v
- LS "y |
r

X(y - Xb*) = 0. TRl
Using the result of Exercise 13.3.2, show that -
zmﬂ‘&!

Qb) = (v — Xb")T(y — Xb") + (b* - b)TXTX(b"=b):

sition 2 1 o ve definite (Exercise 13.4.8) and the ‘
(o), ag o oection 13.4). Deduce that there is only one veetor
» ﬁnd anexpﬁdt expmon fOr b.. Vi

‘Wewmmmhm ‘ ' e

—



