13.2.3 Letting $p = (1 + abc)^{-1}$ we have x = (1 - b + ab)p, y = (1 - c + bc)p, z = (1 - a + ca)p.

13.2.4 The three-equation system may be written in matrix form as

$$\begin{bmatrix} 1 & -1 & 0 \\ -c_1 & 1 & c_1 \\ -t_1 & 0 & 1 \end{bmatrix} \begin{bmatrix} Y \\ C \\ T \end{bmatrix} = \begin{bmatrix} I+G \\ c_0 \\ t_0 \end{bmatrix}.$$

Solution by Cramer's rule gives the same answers as for Problem 2–1: see "Solutions to Problems".

13.3 Inner products

13.3.1 Since $\mathbf{b}^{\mathrm{T}}\mathbf{a} = \mathbf{a}^{\mathrm{T}}\mathbf{b}$, $(\lambda \mathbf{a} + \mu \mathbf{b})^{\mathrm{T}}(\lambda \mathbf{a} + \mu \mathbf{b}) = \lambda^2 \mathbf{a}^{\mathrm{T}}\mathbf{a} + 2\lambda\mu \mathbf{a}^{\mathrm{T}}\mathbf{b} + \mu^2 \mathbf{b}^{\mathrm{T}}\mathbf{b}$. L3 now follows from the fact that $\mathbf{x}^{\mathrm{T}}\mathbf{x} = \|\mathbf{x}\|^2$ for every vector \mathbf{x} .

13.3.2 $|\mathbf{a}^{\mathrm{T}}\mathbf{b}| \leq 1$ by L4, so $-1 \leq \mathbf{a}^{\mathrm{T}}\mathbf{b} \leq 1$. Examples:

(a)
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\0 \end{bmatrix}$; (b) $\begin{bmatrix} 1\\0 \end{bmatrix}$, $\begin{bmatrix} -1\\0 \end{bmatrix}$; (c) $\begin{bmatrix} 1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1 \end{bmatrix}$; (d) $\begin{bmatrix} 0.8\\0.6 \end{bmatrix}$, $\begin{bmatrix} 0.6\\0.8 \end{bmatrix}$.

- 13.3.3 Immediate from L3 and the fact that $(-1)^2 = 1$.
- 13.3.4 For any invertible matrix \mathbf{A} , $\det(\mathbf{A}^{-1}) = (\det \mathbf{A})^{-1}$ and $\det(\mathbf{A}^{T}) = \det \mathbf{A}$. In the special case where $\mathbf{A}^{-1} = \mathbf{A}^{T}$, $(\det \mathbf{A})^{-1} = \det \mathbf{A}$, so $\det \mathbf{A} = \pm 1$.

Examples:
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

13.3.5 Denoting the matrix $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix}$ by **A**, we see that

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

13.3.6 For example $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, which is not an orthogonal matrix because it is not square.

13.3.7 $\lambda = \frac{1}{\sqrt{2}}, \ \mu = \frac{1}{3}, \ \nu = \frac{1}{3\sqrt{2}}$ or their negatives.

13.4 Quadratic forms and symmetric matrices

13.4.1 If $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ then $\mathbf{a}\mathbf{a}^{\mathrm{T}} = \begin{bmatrix} a_1^2 & a_1a_2 \\ a_1a_2 & a_2^2 \end{bmatrix}$. If \mathbf{a} is an *n*-vector, $\mathbf{a}\mathbf{a}^{\mathrm{T}}$ is a symmetric $n \times n$ matrix.

13.4.2

$$\begin{bmatrix} \sum_{i=1}^{n} x_{1i}^{2} & \sum_{i=1}^{n} x_{1i}x_{2i} \\ \sum_{i=1}^{n} x_{1i}x_{2i} & \sum_{i=1}^{n} x_{2i}^{2} \end{bmatrix}$$

- 13.4.3 Let $\mathbf{C} = \mathbf{B}^{\mathrm{T}} \mathbf{A} \mathbf{B}$. Then $\mathbf{C}^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} (\mathbf{B}^{\mathrm{T}})^{\mathrm{T}}$. $\mathbf{A}^{\mathrm{T}} = \mathbf{A}$ by assumption and $(\mathbf{B}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{B}$ always, so $\mathbf{C}^{\mathrm{T}} = \mathbf{C}$ as required.
- 13.4.4 $q(x_1, x_2, x_3) = x_1^2 + (x_2 \frac{1}{2}x_3)^2 + \frac{3}{4}x_3^2 \ge 0$. If $q(x_1, x_2, x_3) = 0$ then $x_1, x_2 \frac{1}{2}x_3$ and x_3 are all 0, so x_2 is also 0. Hence q is positive definite.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 1 \end{bmatrix}$$

13.4.5 The matrix **A** is $\begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}$, which has positive diagonal entries and determinant 2.

13.4.6 (a)
$$t > \sqrt{2}$$
, (b) $t = \sqrt{2}$, (c) $t < -\sqrt{2}$, (d) $t = -\sqrt{2}$, (e) $-\sqrt{2} < t < \sqrt{2}$.

- 13.4.7 Positive definite, indefinite, negative semidefinite.
- 13.4.8 The fact that $\mathbf{C}^{\mathrm{T}}\mathbf{C}$ is symmetric follows immediately from the rules $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$ and $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$. For any k-vector \mathbf{w} , $\mathbf{w}^{\mathrm{T}}\mathbf{C}^{\mathrm{T}}\mathbf{C}\mathbf{w} = \|\mathbf{C}\mathbf{w}\|^{2} \ge 0$. In particular, $\mathbf{w}^{\mathrm{T}}\mathbf{C}^{\mathrm{T}}\mathbf{C}\mathbf{w} > 0$ if $\mathbf{C}\mathbf{w} \neq \mathbf{0}$, which happens if $\mathbf{w} \neq \mathbf{0}$ and the columns of \mathbf{C} are linearly independent. Thus $\mathbf{C}^{\mathrm{T}}\mathbf{C}$ is always positive semidefinite, and is positive definite if the columns of \mathbf{C} are linearly independent, which requires that $k \le n$.

14 FUNCTIONS OF SEVERAL VARIABLES

14.1 Partial derivatives