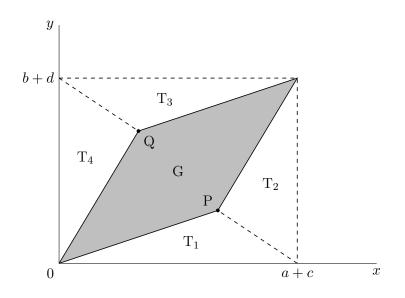
- (iv) If **A** is singular then c_3 must be as in (iii). So if we replace the (3,3) entry of **A** by any number other than c_3 , then **A** becomes invertible.
- 12–4. From Problem 11–4, $\mathbf{B}\mathbf{x} = \mathbf{y}$, where $\mathbf{B} = \mathbf{I} \mathbf{A}$. If there is to be a unique \mathbf{x} for any \mathbf{y} , then \mathbf{B} must be invertible and $\mathbf{x} = \mathbf{B}^{-1}\mathbf{y}$.

In addition, it is given that \mathbf{y} has non-negative components. To ensure that \mathbf{x} has non-negative components for every such \mathbf{y} it is necessary that all entries of \mathbf{B}^{-1} be non-negative. For suppose that \mathbf{B}^{-1} had some negative entry, say the (2,3) entry. By taking \mathbf{y} to be the vector with third component 1 and zeros elsewhere, we see that the second component of \mathbf{x} is negative.

13 DETERMINANTS AND QUADRATIC FORMS

13–1. Let P be the point (a, b), Q the point (c, d).



In the diagram, the area of each of the triangles T_1 and T_3 is $\frac{1}{2}(a+c)b$ by the half-base-timesheight formula. Similarly, the area of each of the triangles T_2 and T_4 is $\frac{1}{2}(b+d)c$. Hence the area of G is

$$(a+c)(b+d) - (a+c)b - (b+d)c = (a+c)d - (b+d)c$$

= $ad - bc$.

If we exchange the positions of P and Q, the area of G becomes cb-da, which equals -(ad-bc). Thus the general formula for the area of G is |ad - bc|.

13-2. (i) det $\mathbf{A} = c_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - c_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$.

Let **C** be the matrix obtained from **A** by replacing its (3, 3) entry by $c_3 + \delta$. Replacing c_3 by $c_3 + \delta$ in the expression just given for det **A**, we see that det **C** = det **A** + δ det **B**. By our assumptions about **A** and **B**, det **A** = 0 and det **B** \neq 0. Hence det **C** \neq 0 if $\delta \neq$ 0.

(ii) Let **A** be a singular 2×2 matrix and let **C** be the matrix obtained by adding x to each of its diagonal entries. Since det $\mathbf{A} = 0$, det $\mathbf{C} = tx + x^2$, where t is the sum of the diagonal entries of **A**. If t = 0, det $\mathbf{C} > 0$ for any non-zero x; if $t \neq 0$, det $\mathbf{C} > 0$ whenever x has the same sign as t; in each case, |x| can be as small as we please.

Now suppose we have a singular 3×3 matrix **A**. As in (i), we denote the 2×2 leading principal submatrix of **A** by **B**. If **B** is invertible then, as in (i), we can make **A** invertible by an arbitrarily small change to its (3, 3) entry. If **B** is singular we can apply the proposition in the 2×2 case, making **B** invertible by arbitrarily small changes to its diagonal entries; we can then use (i) as before. This proves the proposition for 3×3 matrices.

For the 4×4 case, if necessary we apply the proposition for the 3×3 case to ensure that the leading principal submatrix of order 3 is nonsingular. Then, by a similar argument to (i), the 4×4 matrix can be made invertible by an arbitrarily small change to its (4, 4) entry. In the same way, the proposition for the 4×4 case can then be used to prove it for the 5×5 case, and so on.

- (iii) It is easy to see from the expansion formulae that small changes in the entries of a matrix cause only small changes in the determinant. Therefore, arbitrarily small changes in diagonal entries are not enough to transform a matrix with nonzero determinant into a singular matrix.
- 13–3. The cost of producing each unit of gross output of good j is

$$c_j + p_1 a_{1j} + p_2 a_{2j} + \ldots + p_n a_{nj}$$

If all industries exactly break even, then this expression must be equal to p_j for all j. Hence we may write the break-even condition for all industries as the single vector equation $\mathbf{c} + \mathbf{A}^{\mathrm{T}} \mathbf{p} = \mathbf{p}$, or $(\mathbf{I} - \mathbf{A}^{\mathrm{T}})\mathbf{p} = \mathbf{c}$.

Now observe that $\mathbf{I} - \mathbf{A}^{\mathrm{T}} = (\mathbf{I} - \mathbf{A})^{\mathrm{T}}$. Denoting $\mathbf{I} - \mathbf{A}$ by \mathbf{B} as in Problems 11–4 and 12–4, we may write the break-even condition as $\mathbf{B}^{\mathrm{T}}\mathbf{p} = \mathbf{c}$. If there is to be a unique \mathbf{p} for any \mathbf{c} , then \mathbf{B}^{T} must be invertible and $\mathbf{p} = (\mathbf{B}^{\mathrm{T}})^{-1}\mathbf{c}$. In addition, it is given that \mathbf{c} has non-negative components. To ensure that \mathbf{p} has non-negative components for every such \mathbf{c} , it is necessary that $(\mathbf{B}^{\mathrm{T}})^{-1}$ has non-negative entries. This follows from an argument similar to that given in Problem 12–4.

Finally, observe that \mathbf{B}^{T} is invertible if and only if \mathbf{B} is invertible. If \mathbf{B} is invertible then $(\mathbf{B}^{\mathrm{T}})^{-1} = (\mathbf{B}^{-1})^{\mathrm{T}}$; in particular, all entries of $(\mathbf{B}^{\mathrm{T}})^{-1}$ are non-negative if and only if all entries of \mathbf{B}^{-1} are non-negative. Thus \mathbf{A} has the properties required here if and only if it has the properties required in Problem 12–4.

- 13–4. (i) The *i*th component of $\mathbf{y} \mathbf{X}\mathbf{b}$ is $y_i b_1x_{1i} b_2x_{2i}$. The result follows.
 - (ii) $\mathbf{y} \mathbf{X}\mathbf{b} = \mathbf{y} \mathbf{X}\mathbf{b}^* + \mathbf{X}(\mathbf{b}^* \mathbf{b}) = \mathbf{p} + \mathbf{q}$ where $\mathbf{p} = \mathbf{X}(\mathbf{b}^* \mathbf{b})$, $\mathbf{q} = \mathbf{y} \mathbf{X}\mathbf{b}^*$ and $\mathbf{p}^{\mathrm{T}}\mathbf{q} = 0$. The result then follows from that of Exercise 13.3.1.
 - (iii) (*) can be written as $(\mathbf{X}^{\mathrm{T}}\mathbf{X})\mathbf{b}^{*} = \mathbf{X}^{\mathrm{T}}\mathbf{y}$. Since $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ is invertible, there is only one vector \mathbf{b}^{*} which satisfies (*); this is given by $\mathbf{b}^{*} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$.
 - (iv) The answer to (ii) expresses $Q(\mathbf{b})$ as the sum of two terms, only the second of which depends on **b**. Since $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ is positive definite, this second term is positive if $\mathbf{b} \neq \mathbf{b}^*$, zero if $\mathbf{b} = \mathbf{b}^*$. Hence $Q(\mathbf{b})$ is minimised when $\mathbf{b} = \mathbf{b}^*$.

14 FUNCTIONS OF SEVERAL VARIABLES

14–1. (i) $\partial z/\partial x = y$ and $\partial z/\partial y = x$, so the equation of the tangent plane is

$$z = 12 + 3(x - 4) + 4(y - 3)$$

When x = 4 + h and y = 3 + k, the value of z given by the tangent plane is 12 + 3h + 4k.