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(iv) If A is singular then ¢z must be as in (iii). So if we replace the (3,3) entry of A by any
number other than c3, then A becomes invertible.

. From Problem 114, Bx =y, where B =1 — A. If there is to be a unique x for any y, then

B must be invertible and x = B~ ly.

In addition, it is given that y has non-negative components. To ensure that x has non-
negative components for every such y it is necessary that all entries of B~ be non-negative.
For suppose that B~! had some negative entry, say the (2,3) entry. By taking y to be the
vector with third component 1 and zeros elsewhere, we see that the second component of x is
negative.

DETERMINANTS AND QUADRATIC FORMS

Let P be the point (a,b), Q the point (c,d).
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In the diagram, the area of each of the triangles T and Tjy is %(a—kc)b by the half-base-times-
height formula. Similarly, the area of each of the triangles To and Ty is 3(b+ d)c. Hence the
area of G is

(a+c)(b+d)—(a+c)b—(b+d)c=(a+c)d— (b+d)c
= ad — be.

If we exchange the positions of P and Q, the area of G becomes cb—da, which equals —(ad—bc).
Thus the general formula for the area of G is |ad — bc|.

(i) det A = —c

az as ar as ar a2
by b3 b b3 ‘4—(:3 b bo
Let C be the matrix obtained from A by replacing its (3, 3) entry by ¢3+9J. Replacing c3
by c3 + 0 in the expression just given for det A, we see that det C = det A + §det B. By

our assumptions about A and B, det A = 0 and det B # 0. Hence det C # 0 if § # 0.

(ii) Let A be a singular 2x2 matrix and let C be the matrix obtained by adding x to each of
its diagonal entries. Since det A = 0, det C = tx + 22, where t is the sum of the diagonal
entries of A. If t = 0, det C > 0 for any non-zero x; if t # 0, det C > 0 whenever x has
the same sign as t; in each case, |z| can be as small as we please.
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Now suppose we have a singular 3 x 3 matrix A. As in (i), we denote the 2x 2 leading
principal submatrix of A by B. If B is invertible then, as in (i), we can make A
invertible by an arbitrarily small change to its (3, 3) entry. If B is singular we can apply
the proposition in the 2 x 2 case, making B invertible by arbitrarily small changes to
its diagonal entries; we can then use (i) as before. This proves the proposition for 3x3
matrices.

For the 4 x4 case, if necessary we apply the proposition for the 3x 3 case to ensure that
the leading principal submatrix of order 3 is nonsingular. Then, by a similar argument
to (i), the 4x4 matrix can be made invertible by an arbitrarily small change to its (4,4)
entry. In the same way, the proposition for the 4x4 case can then be used to prove it for
the 5x5 case, and so on.

(iii) It is easy to see from the expansion formulae that small changes in the entries of a
matrix cause only small changes in the determinant. Therefore, arbitrarily small changes
in diagonal entries are not enough to transform a matrix with nonzero determinant into
a singular matrix.

The cost of producing each unit of gross output of good j is
¢j +pra1; + p2ag; + ... + Ppanj.

If all industries exactly break even, then this expression must be equal to p; for all j. Hence we
may write the break-even condition for all industries as the single vector equation c+ATp = p,
or (I-AT)p=c.

Now observe that I — AT = (I — A)T. Denoting I — A by B as in Problems 11-4 and 124,
we may write the break-even condition as BTp = c. If there is to be a unique p for any c,
then BT must be invertible and p = (BT)~!c. In addition, it is given that ¢ has non-negative
components. To ensure that p has non-negative components for every such c, it is necessary

that (BT)~! has non-negative entries. This follows from an argument similar to that given in
Problem 12-4.

Finally, observe that BT is invertible if and only if B is invertible. If B is invertible then
(BT)~! = (B~Y)7; in particular, all entries of (B")™! are non-negative if and only if all
entries of B~! are non-negative. Thus A has the properties required here if and only if it has
the properties required in Problem 12—4.

(i) The ith component of y — Xb is y; — byz1; — baxy;. The result follows.

(i) y — Xb = y — Xb* + X(b* — b) = p + q where p = X(b* — b), g = y — Xb* and
pTq = 0. The result then follows from that of Exercise 13.3.1.

(iii) (*) can be written as (XTX)b* = XTy. Since XX is invertible, there is only one
vector b* which satisfies (x); this is given by b* = (XTX)f1 XTy.

(iv) The answer to (ii) expresses Q(b) as the sum of two terms, only the second of which
depends on b. Since XTX is positive definite, this second term is positive if b # b*,
zero if b = b*. Hence Q(b) is minimised when b = b*.

FUNCTIONS OF SEVERAL VARIABLES
(i) 0z/0x =y and 0z/0y = x, so the equation of the tangent plane is
z2=12+43(x —4) +4(y — 3).

When z =4+ h and y = 3+ k, the value of z given by the tangent plane is 12+ 3h + 4k.
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