
(iv) If A is singular then c3 must be as in (iii). So if we replace the (3, 3) entry of A by any
number other than c3, then A becomes invertible.

12–4. From Problem 11–4, Bx = y, where B = I�A. If there is to be a unique x for any y, then
B must be invertible and x = B

�1
y.

In addition, it is given that y has non-negative components. To ensure that x has non-
negative components for every such y it is necessary that all entries of B�1 be non-negative.
For suppose that B

�1 had some negative entry, say the (2, 3) entry. By taking y to be the
vector with third component 1 and zeros elsewhere, we see that the second component of x is
negative.

13 DETERMINANTS AND QUADRATIC FORMS

13–1. Let P be the point (a, b), Q the point (c, d).

y

0 x

b+ d

a+ c

Q

P

G

T3

T1

T4

T2

In the diagram, the area of each of the triangles T1 and T3 is 1

2
(a+c)b by the half-base-times-

height formula. Similarly, the area of each of the triangles T2 and T4 is 1

2
(b+ d)c. Hence the

area of G is

(a+ c)(b+ d)� (a+ c)b� (b+ d)c = (a+ c)d� (b+ d)c

= ad� bc.

If we exchange the positions of P and Q, the area of G becomes cb�da, which equals �(ad�bc).
Thus the general formula for the area of G is |ad� bc|.

13-2. (i) detA = c1

����
a2 a3

b2 b3

����� c2

����
a1 a3

b1 b3

����+ c3

����
a1 a2

b1 b2

����.

Let C be the matrix obtained from A by replacing its (3, 3) entry by c3+�. Replacing c3

by c3 + � in the expression just given for detA, we see that detC = detA+ � detB. By
our assumptions about A and B, detA = 0 and detB 6= 0. Hence detC 6= 0 if � 6= 0.

(ii) Let A be a singular 2⇥2 matrix and let C be the matrix obtained by adding x to each of
its diagonal entries. Since detA = 0, detC = tx+x

2, where t is the sum of the diagonal
entries of A. If t = 0, detC > 0 for any non-zero x; if t 6= 0, detC > 0 whenever x has
the same sign as t; in each case, |x| can be as small as we please.
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Now suppose we have a singular 3⇥3 matrix A. As in (i), we denote the 2⇥2 leading
principal submatrix of A by B. If B is invertible then, as in (i), we can make A

invertible by an arbitrarily small change to its (3, 3) entry. If B is singular we can apply
the proposition in the 2⇥2 case, making B invertible by arbitrarily small changes to
its diagonal entries; we can then use (i) as before. This proves the proposition for 3⇥3
matrices.
For the 4⇥4 case, if necessary we apply the proposition for the 3⇥3 case to ensure that
the leading principal submatrix of order 3 is nonsingular. Then, by a similar argument
to (i), the 4⇥4 matrix can be made invertible by an arbitrarily small change to its (4, 4)
entry. In the same way, the proposition for the 4⇥4 case can then be used to prove it for
the 5⇥5 case, and so on.

(iii) It is easy to see from the expansion formulae that small changes in the entries of a
matrix cause only small changes in the determinant. Therefore, arbitrarily small changes
in diagonal entries are not enough to transform a matrix with nonzero determinant into
a singular matrix.

13–3. The cost of producing each unit of gross output of good j is

cj + p1a1j + p2a2j + . . .+ pnanj .

If all industries exactly break even, then this expression must be equal to pj for all j. Hence we
may write the break-even condition for all industries as the single vector equation c+A

T
p = p,

or (I�A
T)p = c.

Now observe that I �A
T = (I �A)T. Denoting I �A by B as in Problems 11–4 and 12–4,

we may write the break-even condition as B
T
p = c. If there is to be a unique p for any c,

then B
T must be invertible and p = (BT)�1

c. In addition, it is given that c has non-negative
components. To ensure that p has non-negative components for every such c, it is necessary
that (BT)�1 has non-negative entries. This follows from an argument similar to that given in
Problem 12–4.
Finally, observe that B

T is invertible if and only if B is invertible. If B is invertible then
(BT)�1 = (B�1)T; in particular, all entries of (BT)�1 are non-negative if and only if all
entries of B�1 are non-negative. Thus A has the properties required here if and only if it has
the properties required in Problem 12–4.

13–4. (i) The ith component of y �Xb is yi � b1x1i � b2x2i. The result follows.
(ii) y � Xb = y � Xb

⇤ + X(b⇤ � b) = p + q where p = X(b⇤ � b), q = y � Xb
⇤ and

p
T
q = 0. The result then follows from that of Exercise 13.3.1.

(iii) (⇤) can be written as
�
X

T
X
�
b
⇤ = X

T
y. Since X

T
X is invertible, there is only one

vector b
⇤ which satisfies (⇤); this is given by b

⇤ =
�
X

T
X
��1

X
T
y.

(iv) The answer to (ii) expresses Q(b) as the sum of two terms, only the second of which
depends on b. Since X

T
X is positive definite, this second term is positive if b 6= b

⇤,
zero if b = b

⇤. Hence Q(b) is minimised when b = b
⇤.

14 FUNCTIONS OF SEVERAL VARIABLES

14–1. (i) @z/@x = y and @z/@y = x, so the equation of the tangent plane is

z = 12 + 3(x� 4) + 4(y � 3).

When x = 4+h and y = 3+k, the value of z given by the tangent plane is 12+3h+4k.
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