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Nonparametric nearest neighbor based
empirical portfolio selection strategies

Lászĺo Györfi, Frederic Udina, Harro Walk

Summary: In recent years optimal portfolio selection strategies for sequential investment have
been shown to exist. Although their asymptotical optimality is well established, finite sample prop-
erties do need the adjustment of parameters that depend on dimensionality and scale. In this paper
we introduce some nearest neighbor based portfolio selectors that solve these problems, and we
show that they are also log-optimal for the very general class of stationary and ergodic random pro-
cesses. The newly proposed algorithm shows very good finite-horizon performance when applied
to different markets with different dimensionality or scales without any change: we see it as a very
robust strategy.

1 Introduction
In a financial market, on the basis of the past market data, without knowledge of the un-
derlying statistical distribution, a portfolio selection has to be chosen for investment of the
current capital in the available assets at the beginning of the new market period. The goal is
to find a portfolio selection scheme such that the investor’s wealth grows on the average as
fast as by the optimum strategy based on the full knowledge of the underlying distribution.
Nonparametric statistical methods allow to construct asymptotically optimal strategies for
sequential investment in financial markets.
Throughout the paper it is assumed that the vectors of daily price relatives (return vec-
tors) form a stationary and ergodic process. Then a log-optimal rate of growth exists and
is achieved with probability one by a strategy based on the knowledge of the underlying
distribution (Algoet and Cover [2]). Even in the more realistic case that only the past data
are available, with no knowledge of the underlying distribution, selection schemes with
log-optimal growth rate exist (Algoet [1]). Such investment schemes are calleduniver-
sally consistent. Györfi and Scḧafer [7] constructed universally consistent schemes using
histograms from nonparametric statistics, and Györfi, Lugosi, and Udina [6] using kernel
estimates. In this paper a new universal strategy, called nearest neighbor strategy, is pro-
posed which not only guarantees a log-optimal growth rate of capital for all stationary and
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ergodic markets, but also has a good finite-horizon performance in practice, and, as main
novelty, is very robust in the sense that no design parameter tuning is needed to guarantee
this good finite-horizon performance. The reason may be that nearest neighbor methods
can be interpreted as well tractable kernel methods with data-based local choice of band-
widths. In [8], we present a numerical comparison of some empirical portfolio strategies
for NYSE and currency exchange data, according to which the nearest neighbor based
portfolio selection outperform the histogram and the kernel strategy.

The rest of the paper is organized as follows. In Section 2 the mathematical model is
described. In Section 3 a nearest neighbor (NN) based nonparametric sequential investment
strategy is introduced and its universal consistency is stated. The proof of this theoretical
result (Theorem 3.1) is given in Section 4.

2 Mathematical model

The following stock market model has been investigated, among others, by Algoet and
Cover [2]. Further references can be found in Györfi, Lugosi, and Udina [6]. Also the
monographs of Cover and Thomas [4], and Luenberger [9] deal with the concept of log-
optimality below.

Consider a market ofd assets. The evolution of the market in time is represented by a
sequence of return vectorsx1,x2, . . . with values inRd

+, where thej-th componentx(j)
n of

the return vectorxn denotes the amount obtained after investing a unit capital in thej-th
asset on then-th trading period. That is, thej-th componentx(j)

n ≥ 0 of xn expresses the
ratio of the closing and opening prices of assetj during then-th trading period.

The investor is allowed to diversify his capital at the beginning of each trading period
according to a portfolio vectorb = (b(1), . . . b(d)). Thej-th componentb(j) of b denotes
the proportion of the investor’s capital invested in assetj. Throughout the paper we assume
that the portfolio vectorb has nonnegative components with

∑d
j=1 b(j) = 1. It means that

the investor neither consumes money nor deposits new money and that no transaction costs
appear. The non-negativity of the components ofb means that short selling and buying
stocks on margin are not permitted. Denote by∆d the simplex of all vectorsb ∈ Rd

+ with
nonnegative components summing up to one.

Let S0 denote the investor’s initial capital. For the first trading period, the portfolio vector
b1 is constant, usually(1/d, ...1/d). Then at the end of the first trading period the investor’s
wealth becomes

S1 = S0

d∑
j=1

b
(j)
1 x

(j)
1 = S0 〈b1 , x1〉 ,

where〈· , ·〉 denotes inner product. Forj ≤ i we abbreviate byxi
j the array of market

vectors(xj, . . . ,xi). Let Sn−1 be the wealth at the end of then− 1-th trading period, then
it is the initial capital for then-th trading period, for which the portfolio may depend on
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the past return vectors:bn = bn(xn−1
1 ). Therefore we get by induction that

Sn = Sn−1

〈
bn(xn−1

1 ) , xn

〉
= S0

n∏
i=1

〈
bi(x

i−1
1 ) , xi

〉
= S0 exp

{
n∑

i=1

log
〈
bi(x

i−1
1 ) , xi

〉}
.

This may be written asS0 exp {nWn(B)}, whereWn(B) denotes theaverage growth rate
of the investment strategyB = {bn}∞n=1:

Wn(B) =
1

n

n∑
i=1

log
〈
bi(x

i−1
1 ) , xi

〉
.

The goal is to maximize the wealthSn = Sn(B) or, equivalently, maximize the average
growth rateWn(B).
We assume that the sequence of return vectorsx1,x2, . . . are realizations of a random pro-
cessX1,X2, . . . such that{Xn}∞−∞ is a stationary and ergodic process. Besides a mild
moment condition on the log-returns, no other distribution assumptions are made. Accord-
ing to Algoet and Cover [2], for the so-called conditional log-optimum investment strategy
B∗ = {b∗n}∞n=1 defined by

b∗n(Xn−1
1 ) = arg max

b(·)
E
{

log
〈
b(Xn−1

1 ) , Xn

〉∣∣Xn−1
1

}
one has

lim sup
n→∞

1

n
log

Sn

S∗
n

≤ 0 almost surely,

for each competitive strategyB, whereS∗
n = Sn(B∗) andSn = Sn(B). Furthermore

lim
n→∞

1

n
log S∗

n = W ∗ almost surely,

where

W ∗ = E
{

max
b(·)

E
{

log
〈
b(X−1

−∞) , X0

〉∣∣X−1
−∞
}}

is the maximal possible growth rate of any investment strategy. The conditional log-
optimum investment strategyB∗ depends upon the distribution of the stationary and er-
godic process{Xn}∞n=1. Surprisingly, according to Algoet [1], there exists investment
strategyB̃ on the basis of past return data such that

lim
n→∞

1

n
log Sn(B̃) = W ∗ almost surely,

i.e., having the same best asymptotic growth rate asB∗, for each stationary and ergodic
processes{Xn}∞−∞. Such investment strategies are calleduniversally consistent with re-
spect to a class of all stationary and ergodic processes.
The investment strategy of Györfi and Scḧafer’s [7] is, as Algoet’s [1] strategy, histogram
based. At a given time instantn one looks for correspondingly discretizedk-tuplesxn−j

n−k−j+1
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of return vectors in the whole history of the market which are identical to the discretized
return vectorsxn−1

n−k. Such time instantn − j is called matching time. Then design a fixed
portfolio vector optimizing the return for the trading periods following each matching. For
different integerk > 0 and histogram design parameter, mix these portfolios (see (3.3)
below). Gÿorfi, Lugosi, and Udina [6] modified this strategy by use of kernels (“moving-
window”). In both papers, universal consistency of the strategies with respect to the class
of all ergodic processes such thatE{| log X(j)|} < ∞, for j = 1, 2, . . . d, is shown.

3 Nearest neighbor based strategy
Define an infinite array of elementary strategies (the so-called experts)H(k,`) = {h(k,`)(·)},
wherek, ` are positive integers. Just like before,k is the window length of the near past,
and for each̀ choosep` ∈ (0, 1) such that

lim
`→∞

p` = 0. (3.1)

Put
ˆ̀= bp`nc.

At a given time instantn, the expert searches for thê` nearest neighbor (NN) matches in
the past. For fixed positive integersk, ` (n > k + ˆ̀+ 1) and for each vectors = s−1

−k of
dimensionkd introduce the set of thè̂nearest neighbor matches:

Ĵ (k,`)
n,s = {i; k + 1 ≤ i ≤ n such thatxi−1

i−k is among thề NNs of s in xk
1, . . . ,x

n−1
n−k}.

Define the portfolio vector by

b(k,`)(xn−1
1 , s) = arg max

b∈∆d

∏
i∈Ĵ

(k,`)
n,s

〈b , xi〉 .

We define the experth(k,`) by

h(k,`)(xn−1
1 ) = b(k,`)(xn−1

1 ,xn−1
n−k), n = 1, 2, . . . (3.2)

That is,h(k,`)
n is a fixed portfolio vector according to the return vectors following these

nearest neighbors.
Now one forms a “mixture” of all experts using a positive probability distribution{qk,`}
on the set of all pairs(k, `) of positive integers (i. e. such that for allk, `, qk,` > 0). The
investment strategy simply weights the expertsH(k,`) according to their past performances
and{qk,`} such that after thenth trading period, the investor’s capital becomes

Sn =
∑
k,`

qk,`Sn(H(k,`)), (3.3)

whereSn(H(k,`)) is the capital accumulated aftern periods when using the portfolio strat-
egyH(k,`) with initial capitalS0 = 1. This may easily be achieved by distributing the initial
capitalS0 = 1 among all experts such that expertH(k,`) trades with initial capitalqk,`S0.
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We say that a tie occurs with probability zero if for any vectors = sk
1 the random variable

‖Xk
1 − s‖

has continuous distribution function.

Theorem 3.1 Assume (3.1) and that a tie occurs with probability zero. The portfolio
schemeBNN is universally consistent with respect to the class of all stationary and ergodic
processes such thatE{| log X

(j)
0 |} < ∞, for j = 1, 2, . . . d.

4 Proofs
The proof of Theorem 3.1 uses the following three auxiliary results. The first is known as
Breiman’s generalized ergodic theorem [3].

Lemma 4.1 (BREIMAN [3]). Let Z = {Zi}∞−∞ be a stationary and ergodic process. For
each positive integeri, letT i denote the operator that shifts any sequence{. . . , z−1, z0, z1, . . .}
by i digits to the left. Letf1, f2, . . . be a sequence of real-valued functions such that
limn→∞ fn(Z) = f(Z) almost surely (a.s.) for some functionf . Assume thatE supn |fn(Z)| <
∞. Then

lim
n→∞

1

n

n∑
i=1

fi(T
iZ) = Ef(Z) (a.s.)

The next two lemmas are due to Algoet and Cover [2, Theorems 3 and 4].

Lemma 4.2 (ALGOET AND COVER [2]). LetQn∈N∪{∞} be a family of regular probability
distributions over the setRd

+ of all market vectors such that

E{| log U (j)
n |} < ∞

for any coordinate of a random market vectorUn = (U
(1)
n , . . . , U

(d)
n ) distributed according

to Qn. In addition, letB∗(Qn) be the set of all log-optimal portfolios with respect toQn,
that is, the set of all portfoliosb that attain
maxb∈∆d

E{log 〈b , Un〉}. Consider an arbitrary sequencebn ∈ B∗(Qn). If

Qn → Q∞ weakly asn →∞

then, forQ∞-almost allu,
lim

n→∞
〈bn , u〉 → 〈b∗ , u〉

where the right-hand side is constant asb∗ ranges overB∗(Q∞).

Lemma 4.3 (ALGOET AND COVER [2]). Let X be a random market vector defined on a
probability space(Ω,F , P) satisfyingE{| log X(j)|} < ∞. If Fk is an increasing sequence
of sub-σ-fields ofF with

Fk ↗ F∞ ⊆ F ,
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then
E
{

max
b

E [log 〈b , X〉 |Fk]
}
↗ E

{
max

b
E [log 〈b , X〉 |F∞]

}
as k → ∞ where the maximum on the left-hand side is taken over allFk-measurable
functionsb and the maximum on the right-hand side is taken over allF∞-measurable
functionsb.

Proof of Theorem 3.1.The proof is based on techniques used in related prediction prob-
lems, see Gÿorfi and Scḧafer [7], Gÿorfi, Lugosi, and Udina [6]. We need to prove that

lim inf
n→∞

Wn(B) = lim inf
n→∞

1

n
log Sn(B) ≥ W ∗ (a.s.).

Without loss of generality we may assumeS0 = 1, so that

Wn(B) =
1

n
log Sn(B)

=
1

n
log

(∑
k,`

qk,`Sn(H(k,`))

)

≥ 1

n
log

(
sup
k,`

qk,`Sn(H(k,`))

)
=

1

n
sup
k,`

(
log qk,` + log Sn(H(k,`))

)
= sup

k,`

(
Wn(H(k,`)) +

log qk,`

n

)
.

Thus

lim inf
n→∞

Wn(B) ≥ lim inf
n→∞

sup
k,`

(
Wn(H(k,`)) +

log qk,`

n

)
≥ sup

k,`
lim inf
n→∞

(
Wn(H(k,`)) +

log qk,`

n

)
= sup

k,`
lim inf
n→∞

Wn(H(k,`)). (4.1)

The simple argument above shows that the asymptotic rate of growth of the strategyB
is at least as large as the supremum of the rates of growth of all elementary strategies
H(k,`). Thus, to estimatelim infn→∞ Wn(B), it suffices to investigate the performance of
expertH(k,`) on the stationary and ergodic market sequenceX0,X−1,X−2, . . .. First let
the integersk, ` and the vectors = s−1

−k ∈ Rdk
+ be fixed.

Fix p` ∈ (0, 1). Put
˜̀= bp`jc.

Let Ss,r denote the closed sphere centered ats with radiusr. Let the interval

Rk,`(s) = [r′k,`(s), r
′′
k,`(s)]
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be the set of valuesrk,`(s) such that

P{X−1
−k ∈ Ss,rk,`(s)} = p`.

Since tie occurs with probability zero, such interval exists. Because of (3.1),

lim
`→∞

r′′k,`(s) = 0.

For j > k + ˜̀+ 1, introduce the set

J
(k,`)
j,s = {i; −j + k + 1 ≤ i ≤ 0 such thatXi−1

i−k is among thẽ̀ NNs of s

in X−1
−k, . . . ,X

−j+k
−j+1}.

For all Borel setsA, let P(k,`)
j,s denote the (random) measure defined by

P(k,`)
j,s {A} =

∑
i∈J

(k,`)
j,s

I{Xi∈A}

|J (k,`)
j,s |

.

We will show that for alls, with probability one,

P(k,`)
j,s → PX0| ‖X−1

−k−s‖≤rk,`(s)
= P∗(k,`)

s (4.2)

with arbitraryrk,`(s) ∈ Rk,`(s), asj → ∞ in terms of the weak convergence. To see this,
let f be a bounded continuous function defined onRd

+. Then we prove that∫
f(x)P(k,`)

j,s (dx) →
∫

f(x)P∗(k,`)
s (dx) almost surely, asj →∞.

Notice that
Xi−1

i−k is among thẽ̀ NNs of s in X−1
−k, . . . ,X

−j+k
−j+1

if and only if

‖Xi−1
i−k − s‖ ≤ ‖(the ˜̀-th NN of s in X−1

−k, . . . ,X
−j+k
−j+1)− s‖.

Moreover
‖(the ˜̀-th NN of s in X−1

−k, . . . ,X
−j+k
−j+1)− s‖

tends to the setRk,`(s) (j → ∞) a.s. by the ergodic theorem in context of empirical
measures, thus almost uniformly by Egorov’s theorem. Therefore, for arbitraryε > 0 and
δ > 0 ani0 exists such that with probability≥ 1−δ for−i ≥ i0 the following implications
hold:

‖Xi−1
i−k − s‖ ≤ r′k,`(s)− ε

implies that
Xi−1

i−k is among thẽ̀ NNs of s in X−1
−k, . . . ,X

−j+k
−j+1,
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which implies that
‖Xi−1

i−k − s‖ ≤ r′′k,`(s) + ε.

Introduce the sets

J̄
(k,`)
j,s = {i; −j + k + 1 ≤ i ≤ 0, ‖Xi−1

i−k − s‖ ≤ r′k,`(s)− ε}

and

J̃
(k,`)
j,s = {i; −j + k + 1 ≤ i ≤ 0, ‖Xi−1

i−k − s‖ ≤ r′′k,`(s) + ε}.

Without loss of generality, assume thatf ≥ 0. The ergodic theorem implies that

lim
j→∞

1
j−k

∑
i∈J̄

(k,`)
j,s

f(Xi)

1
j−k

|J̃ (k,`)
j,s |

=
E{f(X0)I{‖X−1

−k−s‖≤r′k,`(s)−ε}}

P{‖X−1
−k − s‖ ≤ r′′k,`(s) + ε}

a.s. and with probability≥ 1− δ

E{f(X0)I{‖X−1
−k−s‖≤r′k,`(s)−ε}}

P{‖X−1
−k − s‖ ≤ r′′k,`(s) + ε}

≤ lim inf
j→∞

1
j−k

∑
i∈J

(k,`)
j,s

f(Xi)

1
j−k

|J (k,`)
j,s |

≤ lim sup
j→∞

1
j−k

∑
i∈J

(k,`)
j,s

f(Xi)

1
j−k

|J (k,`)
j,s |

≤ lim
j→∞

1
j−k

∑
i∈J̃

(k,`)
j,s

f(Xi)

1
j−k

|J̄ (k,`)
j,s |

=
E{f(X0)I{‖X−1

−k−s‖≤r′′k,`(s)+ε}}

P{‖X−1
−k − s‖ ≤ r′k,`(s)− ε}

a.s. by ergodic theorem.ε → 0 yields that with probability≥ 1− δ

lim
j→∞

1
j−k

∑
i∈J

(k,`)
j,s

f(Xi)

1
j−k

|J (k,`)
j,s |

=
E{f(X0)I{‖X−1

−k−s‖≤rk,`(s)}}

P{‖X−1
−k − s‖ ≤ rk,`(s)}

for arbitraryrk,`(s) ∈ Rk,`(s). Thus a.s.

lim
j→∞

1
j−k

∑
i∈J

(k,`)
j,s

f(Xi)

1
j−k

|J (k,`)
j,s |

= E{f(X0) | ‖X−1
−k − s‖ ≤ rk,`(s)},

and (4.2) is proved. Recall that by definition,b(k,`)(X−1
1−j, s) is a log-optimal portfolio with

respect to the probability measureP(k,`)
j,s . Let b∗k,`(s) denote a log-optimal portfolio with

respect to the limit distributionP∗(k,`)
s . Then, using Lemma 4.2, we infer from (4.2) that,

asj tends to infinity, we have the almost sure convergence

lim
j→∞

〈
b(k,`)(X−1

1−j, s) , x0

〉
=
〈
b∗k,`(s) , x0

〉
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for P∗(k,`)
s -almost allx0 and hence forPX0-almost allx0. Sinces was arbitrary, we obtain

lim
j→∞

〈
b(k,`)(X−1

1−j,X
−1
−k) , x0

〉
=
〈
b∗k,`(X

−1
−k) , x0

〉
(a.s.) (4.3)

Next we apply Lemma 4.1 for the function

fi(x
∞
−∞) = log

〈
h(k,`)(x−1

1−i) , x0

〉
= log

〈
b(k,`)(x−1

1−i,x
−1
−k) , x0

〉
defined onx∞−∞ = (. . . ,x−1,x0,x1, . . .). Note that

fi(X
∞
−∞) =

∣∣log
〈
h(k,`)(X−1

1−i) , X0

〉∣∣ ≤ d∑
j=1

∣∣∣log X
(j)
0

∣∣∣ ,

which has finite expectation, and

fi(X
∞
−∞) →

〈
b∗k,`(X

−1
−k) , X0

〉
almost surely asi →∞, by (4.3). Asn →∞, Lemma 4.1 yields

Wn(H(k,`)) =
1

n

n∑
i=1

fi(T
iX∞

−∞)

=
1

n

n∑
i=1

log
〈
h(k,`)(Xi−1

1 ) , Xi

〉
→ E

{
log
〈
b∗k,`(X

−1
−k) , X0

〉}
def
= εk,` (a.s.)

Therefore, by (4.1) we have

lim inf
n→∞

Wn(B) ≥ sup
k,`

εk,` ≥ sup
k

lim inf
`

εk,` (a.s.)

and it suffices to show that the right-hand side is at leastW ∗. The rest of the proof is similar
to the end of the proof in [6], so the reader may skip it.
To this end, define, for Borel setsA, B ⊂ Rd

+,

mA(z) = P{X0 ∈ A|X−1
−k = z}

and
µk(B) = P{X−1

−k ∈ B}.
Then for anys ∈ support(µk), and for allA,

P∗(k,`)
s (A) = P

{
X0 ∈ A

∣∣‖X−1
−k − s‖ ≤ rk,`(s)

}
=

P{X0 ∈ A, ‖X−1
−k − s‖ ≤ rk,`(s)}

P{‖X−1
−k − s‖ ≤ rk,`(s)}

=
1

µk(Ss,rk,`(s))

∫
Ss,rk,`(s)

mA(z)µk(dz)

→ mA(s) = P{X0 ∈ A|X−1
−k = s}
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as` →∞ and forµk-almost alls by the Lebesgue density theorem (see [5, Lemma 24.5]),
and therefore

P∗(k,`)

X−1
−k

(A) → P{X0 ∈ A|X−1
−k}

as` →∞ for all A.
Thus, using Lemma 4.2 again, we have

lim inf
`

εk,` = lim
`

εk,`

= E
{
log
〈
b∗k(X

−1
−k) , X0

〉}
(whereb∗k(·) is the log-optimum portfolio with respect

to the conditional probabilityP{X0 ∈ A|X−1
−k})

= E
{
E
{

log
〈
b∗k(X

−1
−k) , X0

〉∣∣X−1
−k

}}
= E

{
max
b(·)

E
{

log
〈
b(X−1

−k) , X0

〉∣∣X−1
−k

}}
def
= ε∗k .

To finish the proof we appeal to the sub-martingale convergence theorem. First note that
the sequence

Yk
def
= E

{
log
〈
b∗k(X

−1
−k) , X0

〉∣∣X−1
−k

}
= max

b(·)
E
{

log
〈
b(X−1

−k) , X0

〉∣∣X−1
−k

}
of random variables forms a sub-martingale, that is,E

{
Yk+1|X−1

−k

}
≥ Yk. To see this, note

that

E
{
Yk+1|X−1

−k

}
= E

{
E
{

log
〈
b∗k+1(X

−1
−k−1) , X0

〉∣∣X−1
−k−1

}∣∣X−1
−k

}
≥ E

{
E
{

log
〈
b∗k(X

−1
−k) , X0

〉∣∣X−1
−k−1

}∣∣X−1
−k

}
= E

{
log
〈
b∗k(X

−1
−k) , X0

〉∣∣X−1
−k−1

}
= Yk .

This sequence is bounded by

max
b(·)

E
{

log
〈
b(X−1

−∞) , X0

〉∣∣X−1
−∞
}

which has a finite expectation. The sub-martingale convergence theorem (see, e.g., Stout
[10]) implies that this sub-martingale is convergent almost surely, andsupk ε∗k is finite. In
particular, by the submartingale property,ε∗k is a bounded increasing sequence, so that

sup
k

ε∗k = lim
k→∞

ε∗k .

Applying Lemma 4.3 with theσ-algebras

σ
(
X−1
−k

)
↗ σ

(
X−1
−∞
)
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yields

sup
k

ε∗k = lim
k→∞

E
{

max
b(·)

E
{

log
〈
b(X−1

−k) , X0

〉∣∣X−1
−k

}}
= E

{
max
b(·)

E
{

log
〈
b(X−1

−∞) , X0

〉∣∣X−1
−∞
}}

= W ∗

and the proof of the theorem is finished.
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