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Abstract

In recent years optimal portfolio selection strategies for sequential in-
vestment have been shown to exist. Although their asymptotical optimality
is well established, finite sample properties do need to be tested in practice.
In this paper we present some experiments based on real data form finan-
cial markets. We show that these methods show very good performance
that reflect his log-optimal asymptotic properties. In our comparisons,
nearest-neighbor based methods appear to be much more robust than oth-
ers. They are quite insensitive to changes in scale or dimensionality that
force other method to adjust smoothing parameters.

1 Introduction

In a financial market, on the basis of the past market data, without knowledge
of the underlying statistical distribution, a portfolio selection has to be chosen
for investment of the current capital in the available assets at the beginning of
the new market period. The goal is to find a portfolio selection scheme such that
the investor’s wealth grows on the average as fast as by the optimum strategy
based on the full knowledge of the underlying distribution. Nonparametric statis-
tical methods allow to construct asymptotically optimal strategies for sequential
investment in financial markets.

Throughout the paper it is assumed that the vectors of daily price relatives
(return vectors) form a stationary and ergodic process. Then a log-optimal rate
of growth exists and is achieved with probability one by a strategy based on
the knowledge of the underlying distribution (Algoet and Cover [2]). Even in the
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more realistic case that only the past data are available, with no knowledge of the
underlying distribution, selection schemes with log-optimal growth rate exist (Al-
goet [1]). Such investment schemes are called universally consistent. Györfi and
Schäfer [10] constructed universally consistent schemes using histograms from
nonparametric statistics, and Györfi, Lugosi, and Udina [9] using kernel esti-
mates. In this paper a new universal strategy, called nearest neighbor strategy,
is proposed which not only guarantees a log-optimal growth rate of capital for all
stationary and ergodic markets, but also have a good finite-horizon performance
in practice, and, as main novelty, is very robust in the sense that no design pa-
rameter tuning is needed to guarantee this good finite-horizon performance. The
reason may be that nearest neighbor methods can be interpreted as well tractable
kernel methods with data-based local choice of bandwidths. In [11], we present
a numerical comparison of some empirical portfolio strategies for NYSE and cur-
rency exchange data, according to which the nearest neighbor based portfolio
selection outperform the histogram and the kernel strategy.

The rest of the paper is organized as follows. In Section 2 the mathematical
model is described. In Section 3 a nearest neighbor (NN) based nonparamet-
ric sequential investment strategy is introduced and its universal consistency is
stated. The proof of this theoretical result (Theorem 3.1) is given in Section 4.

2 Mathematical model

The following stock market model has been investigated, among others, by Algoet
and Cover [2]. Further references can be found in Györfi, Lugosi, and Udina [9].
Also the monographs of Cover and Thomas [7], and Luenberger [13] deal with
the concept of log-optimality below.

Consider a market of d assets. The evolution of the market in time is rep-
resented by a sequence of return vectors x1,x2, . . . with values in Rd

+, where the

j-th component x
(j)
n of the return vector xn denotes the amount obtained after

investing a unit capital in the j-th asset on the n-th trading period. That is,
the j-th component x

(j)
n ≥ 0 of xn expresses the ratio of the closing and opening

prices of asset j during the n-th trading period.
The investor is allowed to diversify his capital at the beginning of each trading

period according to a portfolio vector b = (b(1), . . . b(d)). The j-th component b(j)

of b denotes the proportion of the investor’s capital invested in asset j. Through-
out the paper we assume that the portfolio vector b has nonnegative components
with

∑d
j=1 b(j) = 1. It means that the investor neither consumes money nor de-

posits new money and that no transaction costs appear. The non-negativity of
the components of b means that short selling and buying stocks on margin are
not permitted. Denote by ∆d the simplex of all vectors b ∈ Rd

+ with nonnegative
components summing up to one.

Let S0 denote the investor’s initial capital. For the first trading period, the
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portfolio vector b1 is constant, usually (1/d, ...1/d). Then at the end of the first
trading period the investor’s wealth becomes

S1 = S0

d∑
j=1

b
(j)
1 x

(j)
1 = S0 〈b1 , x1〉 ,

where 〈· , ·〉 denotes inner product. For j ≤ i we abbreviate by xi
j the array of

market vectors (xj, . . . ,xi). Let Sn−1 be the wealth at the end of the n − 1-th
trading period, then it is the initial capital for the n-th trading period, for which
the portfolio may depend on the past return vectors: bn = bn(xn−1

1 ). Therefore
we get by induction that

Sn = Sn−1

〈
bn(xn−1

1 ) , xn

〉
= S0

n∏
i=1

〈
bi(x

i−1
1 ) , xi

〉
= S0 exp

{
n∑

i=1

log
〈
bi(x

i−1
1 ) , xi

〉}
.

This may be written as S0 exp {nWn(B)}, where Wn(B) denotes the average
growth rate of the investment strategy B = {bn}∞n=1:

Wn(B) =
1

n

n∑
i=1

log
〈
bi(x

i−1
1 ) , xi

〉
.

The goal is to maximize the wealth Sn = Sn(B) or, equivalently, maximize the
average growth rate Wn(B).

We assume that the sequence of return vectors x1,x2, . . . are realizations of
a random process X1,X2, . . . such that {Xn}∞−∞ is a stationary and ergodic pro-
cess. Besides a mild moment condition on the log-returns, no other distribution
assumptions are made. According to Algoet and Cover [2], for the so-called
conditional log-optimum investment strategy B∗ = {b∗

n}∞n=1 defined by

b∗
n(Xn−1

1 ) = arg max
b(·)

E
{

log
〈
b(Xn−1

1 ) , Xn

〉∣∣Xn−1
1

}
one has

lim sup
n→∞

1

n
log

Sn

S∗
n

≤ 0 almost surely,

for each competitive strategy B, where S∗
n = Sn(B∗) and Sn = Sn(B). Further-

more

lim
n→∞

1

n
log S∗

n = W∗ almost surely,

where

W∗ = E
{

max
b(·)

E
{

log
〈
b(X−1

−∞) , X0

〉∣∣X−1
−∞}}
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is the maximal possible growth rate of any investment strategy. The conditional
log-optimum investment strategy B∗ depends upon the distribution of the sta-
tionary and ergodic process {Xn}∞n=1. Surprisingly, according to Algoet [1], there
exists investment strategy B̃ on the basis of past return data such that

lim
n→∞

1

n
log Sn(B̃) = W∗ almost surely,

i.e., having the same best asymptotic growth rate as B∗, for each stationary
and ergodic processes {Xn}∞−∞. Such investment strategies are called universally
consistent with respect to a class of all stationary and ergodic processes.

The investment strategy of Györfi and Schäfer’s [10] is, as Algoet’s [1] strat-
egy, histogram based. At a given time instant n one looks for correspondingly
discretized k-tuples xn−j

n−k−j+1 of return vectors in the whole history of the market

which are identical to the discretized return vectors xn−1
n−k. Such time instant n−j

is called matching time. Then design a fixed portfolio vector optimizing the re-
turn for the trading periods following each matching. For different integer k > 0

and histogram design parameter, mix these portfolios (see (3) below). Györfi, Lu-
gosi, and Udina [9] modified this strategy by use of kernels (“moving-window”).
In both papers, universal consistency of the strategies with respect to the class
of all ergodic processes such that E{| log X(j)|} < ∞, for j = 1, 2, . . . d is shown.

3 Nearest neighbor based strategy

Define an infinite array of elementary strategies (the so-called experts) H(k,`) =

{h(k,`)(·)}, where k, ` are positive integers. Just like before, k is the window length
of the near past, and for each ` choose p` ∈ (0, 1) such that

lim
`→∞ p` = 0. (1)

Put
^̀ = bp`nc.

At a given time instant n, the expert searches for the ^̀ nearest neighbor (NN)
matches in the past. For fixed positive integers k, ` (n > k + ^̀ + 1) and for
each vector s = s−1

−k of dimension kd introduce the set of the ^̀ nearest neighbor
matches:

Ĵ(k,`)
n,s = {i; k+1 ≤ i ≤ n such that xi−1

i−k is among the ^̀ NNs of s in xk
1, . . . ,x

n−1
n−k}.

Define the portfolio vector by

b(k,`)(xn−1
1 , s) = arg max

b∈∆d

∏
i∈Ĵ

(k,`)
n,s

〈b , xi〉 .
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We define the expert h(k,`) by

h(k,`)(xn−1
1 ) = b(k,`)(xn−1

1 ,xn−1
n−k), n = 1, 2, . . . (2)

That is, h
(k,`)
n is a fixed portfolio vector according to the return vectors following

these nearest neighbors.
Now one forms a “mixture” of all experts using a positive probability distri-

bution {qk,`} on the set of all pairs (k, `) of positive integers (i. e. such that
for all k, `, qk,` > 0). The investment strategy simply weights the experts H(k,`)

according to their past performances and {qk,`} such that after the nth trading
period, the investor’s capital becomes

Sn =
∑
k,`

qk,`Sn(H(k,`)), (3)

where Sn(H(k,`)) is the capital accumulated after n periods when using the port-
folio strategy H(k,`) with initial capital S0 = 1. This may easily be achieved by
distributing the initial capital S0 = 1 among all experts such that expert H(k,`)

trades with initial capital qk,`S0.
We say that a tie occurs with probability zero if for any vector s = sk

1 the
random variable

‖Xk
1 − s‖

has continuous distribution function.

Theorem 3.1 Assume (1) and that a tie occurs with probability zero. The port-
folio scheme BNN is universally consistent with respect to the class of all station-
ary and ergodic processes such that E{| log X

(j)
0 |} < ∞, for j = 1, 2, . . . d.

4 Empirical results

In this section we present some numerical results obtained by applying the above
algorithms to two sets of financial data. The first data set, described and analyzed
in Section 4.1, includes prices for 36 NYSE stocks along 22 years. In Section 4.2
we analyze currency exchange data for eight currencies during a period of more
than 13 years.

Testing the algorithms with data from real financial markets is meaningful,
but it needs some previous considerations about the assumptions implied in our
model that are not found in real markets.

First, we assume that assets are available in the desired quantities at a given
price at any trading period. The investment period is modeled as a single instant:
there is a single price for the entire period, the closing price at the previous period.
After we do the desired transaction, we are informed about the closing price and
the period ends.
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We also assume that assets are arbitrarily indivisible. As in the mathemat-
ical analysis, we ignore transaction costs to be paid when switching portfolios.
Moreover, all the wealth achieved in the last period is fully invested in the next
one, without any extra investment allowed (no short sales on margin). Also, the
set of assets involved is fixed: no asset may disappear, no new assets are allowed
to be introduced in the market.

Another implicit assumption is that prices are not affected by our actions on
the market (since we use historical data, we are forced to assume that). In the
NYSE data example below, this is not a realistic assumption since we are trading
enormous amount of asset values, not negligible even in comparison with the full
market (we multiply our initial wealth by 1012 after about 20 years of trading).

All the proposed universally consistent algorithms use an infinite array of
experts. In practice we take a finite array of size K× L (usually 5× 10). We also
include, as an additional expert, with index k = ` = 0, the strategy that uses the
full history to calculate the portfolio by

h(0,0)(xn−1
1 ) = arg max

b∈∆d

∏
0<i<n

〈b , xi〉 , n > 1 .

In all cases we take the uniform distribution {qk,`} = 1/(KL + 1) over the experts
in use. Implementation of the histogram BH and kernel BK portfolios is described
in detail in Györfi, Lugosi, and Udina [9]. In the results presented below, BK(c)

denote the kernel portfolio where the expert (k, `) uses rk,` = c/` as radius for
the kernel.

For computational complexity reasons, see below, we introduce a variant of the
nearest neighbor rule based on the one described previously. Just like before, k is
the window length of the near past, however, s` is a segment length. At a given
time instant n, the expert searches for a single nearest neighbor match within each
segment of length s`. To define H(k,`), for fixed positive integers k, ` introduce
first the nearest neighbors within each segment. For 1 ≤ i ≤ b(n − 1)/s`c, let
Ni − 1 be the instant of nearest neighbor match of xn−1

n−k within the ith segment:

Ni = arg min
(i−1)s`+k≤j<is`

‖xj−1
j−k − xn−1

n−k‖.

We define the expert h(k,`), for n > s` + 1, by

h(k,`)(xn−1
1 ) = arg max

b∈∆d

∏
{1≤i≤b(n−1)/s`c}

〈b , xNi
〉 .

Then we combine experts in the usual way and this way we obtain the first-
neighbor that we shall denote by BfN.

It is not difficult to see that Theorem 3.1 is also valid for the first neighbor
variant, provided that (1) is replaced by

lim
`→∞ s` = ∞. (4)
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When using real data, ties occur quite often, sometimes due to rounding. But
in many cases it is also true that real data can not be assumed coming from a
continuous process: for example, the NYSE data discussed below present many
cases of relative price equal to one, much more than one may expect coming from
rounding. This is not surprising as one may expect that a given asset does not
vary its price on several trading days. Presence of ties does not result in any
problem or degradation of performance of the nearest-neighbor portfolio, as can
be seen in the results presented below. We deal with ties in the following way:
when taking ν elements from a set that have distances di (assuming distances
in increasing order), if dν = dν+1, we take also the element with index ν + 1

together with all subsequent elements that show the same distance. In the first
neighbor case, in the presence of ties within a segment, we take the more recent
period of those tied.

In the nearest neighbor portfolio implementation, we take

pl = 0.02 + 0.5
` − 1

L − 1
,

so our 50 experts take from 2% to 52% of the history as matching periods. For
the first neighbor portfolio we take

sl = 2 + 50
` − 1

L − 1
.

With this choice the number of matches used by the experts is very similar in
both variants.

It is possible that other choices of these quantities may improve the perfor-
mance of the algorithms, but this would be true for some situations or data sets
and not for other. We do not want to find parameter choices tailored for a par-
ticular data set. We want to stress that a single and reasonable choice of these
parameters works very well in very different markets, not depending on the di-
mensionality or the scale of the relative prices being considered. In the examples
below, the very same choice works for d = 2 or d = 36, for stock exchange data
or for currency exchange data, scales in those last cases being very different one
from another.

4.1 Stock market data

The first data set we use is a standard set of New York Stock Exchange data used
by Cover [6], Singer [14], Hembold, Schapire, Singer, and Warmuth [12], Blum
and Kalai [3], Borodin, El-Yaniv, and Gogan [4], and others. It includes daily
prices of 36 assets along a 22-year period (5651 trading days) ending in 1985.

We first take the pairs used in the aforementioned papers, see Table 1. In the
second and third columns of the table we show the wealth achieved by investing
one US$, respectively, in the best of both assets, following the best constantly
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Table 1: Wealth achieved by different strategies by investing in the pairs of nyse
stocks used in Cover [6]. In the second column we show some reference results
from the literature. In the right part of the table results are shown for the
histogram, kernel and nearest neighbors strategies.

Stocks Best Exp. [k, `]

Iroquois Best asset 8.92 BH 2.3e+10 1.395e+11 [1,1]
Kin Ark bcrp 73.70 BK 4.038e+10 9.014e+11 [2,2]

Oracle 6.85e+53 BNN 1.156e+12 1.439e+13 [2,8]
Cover up 39.97 BfN 5.094e+11 6.108e+12 [2,3]

Singer sap 143.7
Com. Met. Best asset 52.02 BH 162.5 327.8 [2,1]
Mei. Corp bcrp 103.0 BK 775.1 4749. [2,5]

Oracle 2.12e+35 BNN 3.505e+3 3.148e+4 [3,6]
Cover up 74.08 BfN 1.018e+4 5.63e+4 [4,2]

Singer sap 107.7
Com. Met. Best asset 52.02 BH 1.331e+10 8.544e+10 [1,1]
Kin Ark bcrp 144.0 BK 1.111e+11 1.411e+12 [3,3]

Oracle 1.84e+49 BNN 4.781e+12 8.257e+13 [3,7]
Cover up 80.54 BfN 9.031e+11 8.262e+12 [3,2]

Singer sap 206.7
IBM Best asset 13.36 BH 63.87 112.2 [1,5]
Coca-Cola bcrp 15.02 BK 47.6 194.6 [1,6]

Oracle 1.08e+15 BNN 74.37 296.3 [1,7]
Cover up 14.24 BfN 85.25 260.3 [4,9]

Singer sap 15.05
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rebalanced portfolio (BCRP), by an “Oracle” that knows in advance the prices
for the next period, using the universal portfolio as reported in Cover [6], and
the SAP portfolio as reported in Singer [14]. Note that BCRP and Oracle do not
correspond to any valid investment strategy; they can only be determined in full
hindsight. In the right part of the table we report our results for histogram (BH),
kernel (BK, with constant c = 0.05), nearest neighbor (BNN) and first neighbor
(BfN) portfolios. For each pair, we start with one unit of wealth (say one US
dollar), we use K = 1, . . . , 5 and L = 1, . . . , 10 for a total of 51 experts, including
the expert that uses the full available past to compute the optimum portfolio. In
the last column we report the wealth achieved by the best expert among the 51

competing, and its values for k, `.
Investing in a fixed pair of assets involves the difficult choice of the pair, so

we prefer to report results for a more blind strategy: simply invest in all assets
available. Table 2 summarizes the wealth achieved by several portfolio strategies
when one dollar is split between the 36 assets in the first period. Our implemen-
tation of the histogram portfolio does not allow for such a large dimensionality.
For the kernel portfolio we take c = 1.00 as a good value for this dimensionality.
Nearest and first neighbor portfolios are as described before. In all cases, we use
K = 5, L = 10. For the sake of reference, we also indicate the wealth achieved by
bcrp.

Table 2: Wealth achieved by various strategies. In all cases one unit is invested in
the first period uniformly in all 36 stocks included in our NYSE data set. BK is
the kernel strategy with constant c = 1.00, BNN is the nearest neighbor portfolio,
BfN is the first neighbor variant of the last one, and bcrp is the best constantly
rebalanced portfolio.

After period bcrp BK(1.00) BNN BfN

500 13.07 3.926 8.096 11.61
1000 7.324 6.412 23.98 31.40
1500 16.03 13.35 66.44 102.2
2000 10.21 12.34 103.9 116.5
2500 17.48 77.53 1050.2 1316.
3000 18.81 1.749e+3 6.416e+5 1.326e+5
3500 34.57 4.554e+4 3.650e+6 9.578e+6
4000 55.52 1.832e+6 1.489e+8 5.054e+8
4500 106.8 8.066e+7 1.322e+9 5.364e+9
5000 125.4 8.066e+7 1.238e+10 2.822e+10
5500 267.8 9.414e+8 2.777e+11 2.837e+11
5651 250.6 1.116e+9 3.313e+11 2.302e+11

A better graphical comparison of results achieved by our algorithms can be
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seen in Figure 1 where the full time series is represented. It is interesting to
observe that while the kernel portfolio needs about 2000 periods to start getting
some wealth, the nearest neighbor is able to exploit the information very soon:
even it detects around n = 400 that there is one particular asset that is growing
fast in these periods.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0  1000  2000  3000  4000  5000

Investing on 36 NYSE assets

Nearest Neigh.
Unif. kernel (1.0)

BCRP

Figure 1: Wealth achieved along N = 5651 daily periods by investing one US$
in 36 NYSE stocks (data set described in the text) using several asymptotically
optimal strategies. Horizontal axis is time period number, vertical is wealth
achieved, on logarithmic scale.

A more detailed comparison of the different performance of kernel versus
nearest neighbor is made in Table 3. There we list the wealth achieved by each
expert at the end of the full time period. In the lower half of the listing it can
be seen that most of the experts in the nearest neighbor setting have quite good
performance, all of them being within a factor of 105 of the overall wealth. On
the contrary, in the upper half there are experts with very good performance but
there are also many with very low final wealth, of the order of 10−8 times less
than the overall final wealth. Obviously, some better choice of the parameters
that define the radius of the kernel will provide better results, but these would be
tailored for this particular case, dimension, and data set, while the parameters
chosen for the nearest neighbor are valid without any change for all situations,
for different values of k and dimensions. This is why we see (in this and the rest
of the examples we studied, not all reported here) the nearest neighbor as a very
robust algorithm that performs fairly well without any adjustment for different
data sets, dimensionalities and scales.
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Table 3: Wealth achieved by each expert at the last period when investing one
unit in the 36 NYSE assets. Upper part is for the kernel (c = 1.0) portfolio,
while the lower part is for the nearest neighbor portfolio. Experts are indexed by
k = 1..5 in columns and ` = 1..10 in rows.

BK(1.0) on 36 NYSE assets. S5651 = 1.1e + 9

` k 1 2 3 4 5
1 4.0 4.2 4.3 5.2 3.3
2 5.0 7.2 1.1e+1 4.2e+1 8.2e+1
3 2.4e+1 7.5e+2 7.6e+4 4.9e+6 1.0e+7
4 5.7e+3 4.7e+6 1.2e+7 4.9e+5 5.4e+2
5 1.7e+8 8.0e+7 7.1e+2 2.e+2 3.1e+1
6 5.2e+9 3.9e+6 1.1e+2 2.2e+1 2.7e+1
7 4.2e+10 3.5e+3 1.7e+1 2.7e+1 2.7e+1
8 8.4e+9 3.8e+1 2.4e+1 2.7e+1 2.7e+1
9 8.3e+8 4.3e+1 2.7e+1 2.7e+1 2.7e+1
10 6.5e+5 3.4e+1 2.7e+1 2.7e+1 2.7e+1

BNN on 36 NYSE assets. S5651 = 3.3e + 11

1 5.2e+10 1.3e+8 1.2e+7 1.5e+8 3.0e+7
2 1.4e+11 6.4e+8 3.5e+7 2.2e+8 1.9e+8
3 1.9e+11 2.0e+9 1.1e+8 1.1e+9 9.5e+8
4 1.6e+11 8.1e+8 6.0e+8 1.5e+10 2.9e+9
5 3.5e+11 7.0e+8 1.3e+8 2.0e+10 7.0e+9
6 6.1e+11 2.9e+9 1.9e+9 4.3e+9 1.3e+9
7 6.8e+12 8.1e+8 1.7e+9 7.7e+9 2.0e+8
8 7.7e+12 2.4e+9 4.6e+8 1.7e+10 4.3e+7
9 2.1e+11 1.3e+9 7.3e+8 4.1e+9 1.5e+7
10 5.9e+11 9.8e+8 1.9e+7 5.5e+7 7.1e+6
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4.2 Currency exchange data

Table 4: Some descriptive statistics for the exchange rate data.

Currency Final Mean St. Dev. Min. p25 p75 Max.
Jap. Yen 1.2456 0.000089 0.0071 -0.0405 -0.0037 0.0035 0.0799
Swiss Fr. 1.1891 0.000077 0.0073 -0.0477 -0.0044 0.0043 0.0545
Norw. Kr. 0.9774 0.000016 0.0068 -0.0529 -0.0036 0.0038 0.0491
Ecu/Euro 1.0097 0.000022 0.0062 -0.0498 -0.0034 0.0034 0.0338
Brit. Pnd. 1.0404 0.000028 0.0058 -0.0420 -0.0029 0.0031 0.0431
Can. Dol. 0.9184 -0.000018 0.0037 -0.0172 -0.0020 0.0019 0.0168
Hung. Fnt. 0.4098 -0.000233 0.0073 -0.0866 -0.0031 0.0028 0.0370

We applied our algorithms to a data set of currency exchange rates to check
that the nearest neighbor is very robust against changes of scale or dimensional-
ity. Data were obtained from Datastream Advance, a commercial database, and
include exchange rates to US$ for seven currencies (see Table 4) from December
6, 1991 to January 27, 2005, a total of 3429 daily periods in just over 13 years.
The currencies are Japanese Yen, Swiss Franc, Norwegian Crown, European Cur-
rency Unit followed by the Euro when it was introduced, British Pound, Canadian
Dollar and Hungarian Forint. In Table 4 we report, for each currency, the final
wealth of one US$ invested in that currency from the first period, and also some
statistics of the series of daily returns (ratio of price to previous price, minus one)
for all 3429 periods. Statistics include the mean, standard deviation, minimum,
25th and 75th percentiles, and maximum. We do not include the median because
it is identical to zero in all cases.

Table 5 and Figure 2 show the results of investing one US$ split into the seven
currencies and cash and then selecting the portfolio for each period according the
histogram, kernel, nearest neighbors and first neighbor. We use K = 5 in all
cases, and L = 10 in all cases except for the histogram that uses L = 6. The
kernel algorithm is used here with c = 0.1 to adjust it to the dimensionality and
scale of this case. The nearest neighbor algorithms are used as described before,
without any parameter tuning. The second column of Table 5 reports results for
the best constant rebalanced portfolio. Note that we introduce cash as a possible
asset to invest in along with the seven currencies. We consider cash not having
any variation, i. e. no interest rate at all.

Results here are fairly good, note that a wealth factor of 393.0 along 3429

periods is roughly equivalent to a yearly increase rate of 57%, so even in this
case our algorithms are able to efficiently exploit the existing inefficiency of this
market. What should be remarked again is that the nearest neighbor algorithms
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perform better than the rest without needing any parameter adjustment.

Table 5: Wealth achieved by various strategies. In all cases one unit is invested
in the first period uniformly in all currencies included in our data set, cash is also
included. bcrp is the best constantly rebalanced portfolio, BH is the histogram
strategy, BK(0.1) is the kernel strategy, BNN is the nearest neighbor portfolio,
and BfN is the first neighbor variant of the last one.

After period bcrp BH BK(0.1) BNN BfN

500 1.184 1.129 1.419 2.734 2.606
1000 1.276 1.174 2.904 9.095 7.996
1500 1.058 1.898 3.775 13.78 11.26
2000 1.115 2.551 5.605 23.33 18.01
2500 1.028 3.407 10.14 48.84 35.98
3000 1.118 8.215 26.71 142.3 100.4
3429 1.273 22.22 70.11 393.0 280.1

4.3 Computational cost

The methods introduced here are quite costly to compute. There are essentially
two steps that are very computing intensive: the selection of the matches in the
past and the optimization step. The computing cost of the optimization step is
related to the number of matches found. To give an idea of the importance of
this, note that the kernel algorithm, when used for our NYSE data with c = 0.5,
took half the time (12 hours) than when used with c = 1.0. All times reported
here are approximate and refer to a run over the full period of the data set using
a PC with a Pentium Xeon CPU at 2.0Ghz.

In the nearest neighbor case, running all n = 5651 periods for the d = 36

assets took 36 hours, while using the first neighbor variant this time reduced
to 12 hours. The computing load due to the optimization is the same in both
cases, but searching for the matches in the first case is much more costly because
it requires sorting all previous data sequences according to the distance to the
current one.

To show a more complete comparison of the discussed algorithms, we may
mention that computation of the optimal portfolio for the Iroquois/Kin Ark pair
mentioned in Section 4.1 took 46 minutes for the nearest neighbor portfolio,
37 minutes for the first neighbor, and 10 minutes for the kernel portfolio with
c = 0.05.
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Figure 2: Wealth achieved along N = 3429 daily periods by investing one US$ in
seven foreign currencies and cash. Labels in the legend are in the same top down
order as the lines in the graph. Horizontal axis is time period number, vertical is
the wealth achieved, in logarithmic scale.

5 Conclusion

We have shown how to construct and implement an algorithm for sequential in-
vestment. The algorithm is based on nearest neighbor estimation and we prove
that it has asymptotical optimality for the very general class of stationary and
ergodic processes. The more interesting property of the new algorithm is its
robustness: it may be applied to different situations without needing any adjust-
ment to the scale or dimensionality. Empirical results on real financial data show
very good finite-horizon performance and are even spectacular in some cases.
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